! Gulf of Alaska NPZ Biological Model Parameters. ! !============================================================================== ! Copyright (c) 2002 ROMS/TOMS Group, version 2.0 === !========================================================= Hernan G. Arango === ! ! ! Input parameters can be entered in ANY order, provided that the parameter ! ! KEYWORD (usually, upper case) is typed correctly followed by "=" or "==" ! ! symbols. Any comment lines are allowed and must begin with an exclamation ! ! mark (!) in column one. Comments may appear to the right of a parameter ! ! specification to improve documentation. All comments will ignored during ! ! reading. Blank lines are also allowed and ignored. Continuation lines in ! ! a parameter specification are allowed and must be preceded by a backslash ! ! (\). In some instances, more than one value is required for a parameter. ! ! If fewer values are provided, the last value is assigned for the entire ! ! parameter array. The multiplication symbol (*), without blank spaces in ! ! between, is allowed for a parameter specification. For example, in a two ! ! grids nested application: ! ! ! ! AKT_BAK == 2*1.0d-6 2*5.0d-6 ! m2/s ! ! ! ! indicates that the first two entries of array AKT_BAK, in fortran column- ! ! major order, will have the same value of "1.0d-6" for grid 1, whereas the ! ! next two entries will have the same value of "5.0d-6" for grid 2. ! ! ! ! In multiple levels of nesting and/or multiple connected domains step-ups, ! ! "Ngrids" entries are expected for some of these parameters. In such case, ! ! the order of the entries for a parameter is extremely important. It must ! ! follow the same order (1:Ngrids) as in the state variable declaration. The ! ! USER may follow the above guidelines for specifying his/her values. These ! ! parameters are marked by "==" plural symbol after the KEYWORD. ! ! ! !============================================================================== ! ! NOTICE: Input parameter units are specified within brakets and default ! ****** values are specified within braces. ! ! Switch to control the computation of biology within nested and/or multiple ! connected grids. Lbiology == T ! Maximum number of iterations to achieve convergence of the nonlinear ! solution. (Never tried this...) BioIter == 1 ! Portion of irradiance that is PAR PARfrac == 0.5d0 ! Frost says 0.5, Jerlov (1976) says 0.43 ! Biological conversions xi == 0.0126d0 ! Nitrogen:Carbon ratio (mmol N / mg C) ccr == 110.0d0 ! Carbon:Chlorophyll ratio (mg C / mg Chl-a) ccrPhL == 70.0d0 ! Carbon:Chlorophyll ratio (mg C / mg Chl-a) ! Light k_ext == 0.03d0 ! Extinction coefficient due to seawater (1/m) k_chl == 0.12d0 ! Extinction coefficient due to Phy. (1/m) ! Small Phytoplankton ! DiS == 0.851d0 ! Doubling rate parameter DpS == 0.0275d0 ! Doubling rate exponent alphaPhS == 17.0d0 ! Slope of P-I curve (mg C/mg Chl-a/E/m2) DiS == 1.2d0 ! Doubling rate parameter ! DpS == 0.040d0 ! Doubling rate exponent ! alphaPhS == 10.0d0 ! Slope of P-I curve (mg C/mg Chl-a/E/m2) psiPhS == 3.0d0 ! Coefficient of NO3 limitation ! psiPhS == 1.0d0 ! Coefficient of NO3 limitation ! k1PhS == 10.0d0 ! Half-saturation constant for NO3 limitation k1PhS == 0.5d0 ! Half-saturation constant for NO3 limitation ! k2PhS == 1.0d0 ! Half-saturation constant for NH4 limitation k2PhS == 0.2d0 ! Half-saturation constant for NH4 limitation respPhS == 1.2d0 ! Specific respiration rate for PhS respPhL == 1.2d0 ! Specific respiration rate for PhL respMZS == 0.2d0 ! Specific respiration rate for MZS respMZL == 0.2d0 ! Specific respiration rate for MZL Large Phytoplankton ! DiL == 0.851d0 ! Doubling rate parameter DpL == 0.0275d0 ! Doubling rate exponent alphaPhL == 10.0d0 ! Slope of P-I curve (mg C/mg Chl-a/E/m2) DiL == 1.2d0 ! Doubling rate parameter ! DpL == 0.0275d0 ! Doubling rate exponent ! alphaPhL == 7.0d0 ! Slope of P-I curve (mg C/mg Chl-a/E/m2) psiPhL == 1.0d0 ! Coefficient of NO3 limitation k1PhL == 0.5d0 ! Half-saturation constant for NO3 limitation k2PhL == 1.0d0 ! Half-saturation constant for NH4 limitation ! Feeding preference of Small Microzooplankton fpPhSMZS == 1.0d0 ! for Small Phytoplankton fpPhLMZS == 0.0d0 ! for Large Phytoplankton ! Small Microzooplankton growth eMZS == 3.0d0 ! maximum specific ingestion rate (mg C/mg C/d) Q10MZS == 2.3d0 ! Q10 for growth rate Q10MZST == 5.0d0 ! Temperature coefficient for Q10 (deg. C) ! Q10MZS == 2.8d0 ! Q10 for growth rate ! Q10MZST == 7.0d0 ! Temperature coefficient for Q10 (deg. C) ! fMZS == 800.0d0 ! Half-saturation constant for grazing (mg C/m3) fMZS == 25.0d0 ! Half-saturation constant for grazing (mg C/m3) gammaMZS == 0.45d0 ! Growth efficiency kMZS == 0.5d0 ! Assimilation efficiency ! Feeding preference of Large Microzooplankton fpPhSMZL == 0.0d0 ! for Small Phytoplankton fpPhLMZL == 1.0d0 ! for Large Phytoplankton fpMZSMZL == 1.0d0 ! for Small Microzooplankton ! Large Microzooplankton growth eMZL == 5.0d0 ! maximum specific ingestion rate (mg C/mg C/d) Q10MZL == 2.0d0 ! Q10 for growth rate Q10MZLT == 5.0d0 ! Temperature coefficient for Q10 (deg. C) ! Q10MZLT == 15.0d0 ! Temperature coefficient for Q10 (deg. C) ! fMZL == 800.0d0 ! Half-saturation constant for grazing (mg C/m3) fMZL == 50.0d0 ! Half-saturation constant for grazing (mg C/m3) gammaMZL == 0.45d0 ! Growth efficiency kMZL == 0.5d0 ! Assimilation efficiency ! Feeding preference of Copepods fpPhSCop == 0.0d0 ! for Small Phytoplankton fpPhLCop == 1.0d0 ! for Large Phytoplankton fpMZSCop == 1.0d0 ! for Small Microzooplankton fpMZLCop == 1.0d0 ! for Large Microzooplankton ! Copepods growth ! eCop == 2.526d0 ! maximum specific ingestion rate (mg C/mg C/d) eCop == 0.50d0 ! maximum specific ingestion rate (mg C/mg C/d) Q10Cop == 1.37d0 ! Q10 for growth rate ! Q10Cop == 3.50d0 ! Q10 for growth rate Q10CopT == 5.0d0 ! Temperature coefficient for Q10 (deg. C) ! Q10CopT == 7.5d0 ! Temperature coefficient for Q10 (deg. C) ! fCop == 200.425d0 ! Half-saturation constant for grazing (mg C/m3) fCop == 10.000d0 ! Half-saturation constant for grazing (mg C/m3) gammaCop == 0.2d0 ! Growth efficiency kCop == 0.45d0 ! Assimilation efficiency ! Feeding preference of Neocalanus fpPhSNCa == 0.0d0 ! for Small Phytoplankton ! fpPhLNCa == 0.5d0 ! for Large Phytoplankton fpPhLNCa == 1.0d0 ! for Large Phytoplankton fpMZSNCa == 1.0d0 ! for Small Microzooplankton fpMZLNCa == 1.0d0 ! for Large Microzooplankton ! Neocalanus growth eNCa == 0.5d0 ! maximum specific ingestion rate (mg C/mg C/d) ! eNCa == 0.17d0 ! maximum specific ingestion rate (mg C/mg C/d) Q10NCa == 1.75d0 ! Q10 for growth rate Q10NCaT == 5.0d0 ! Temperature coefficient for Q10 (deg. C) ! fNCa == 200.0d0 ! Half-saturation constant for grazing (mg C/m3) fNCa == 10.00d0 ! Half-saturation constant for grazing (mg C/m3) gammaNCa == 0.3d0 ! Growth efficiency kNCa == 0.5d0 ! Assimilation efficiency ! Feeding preference of Euphausiids fpPhSEup == 0.0d0 ! for Small Phytoplankton fpPhLEup == 0.3d0 ! for Large Phytoplankton fpMZSEup == 0.7d0 ! for Small Microzooplankton fpMZLEup == 0.7d0 ! for Large Microzooplankton fpCopEup == 1.0d0 ! for Copepods ! Euphausiids growth eEup == 0.234d0 ! maximum specific ingestion rate (mg C/mg C/d) Q10Eup == 2.25d0 ! Q10 for growth rate Q10EupT == 8.0d0 ! Temperature coefficient for Q10 (deg. C) fEup == 75.0d0 ! Half-saturation constant for grazing (mg C/!m3) ! fEup == 200.0d0 ! Half-saturation constant for grazing (mg C/m3) gammaEup == 0.4d0 ! Growth efficiency kEup == 0.45d0 ! Assimilation efficiency ! Small Phytoplankton senescence minmPhS == 0.1d0 ! Minimum daily linear mortality rate (1/d) maxmPhS == 0.85d0 ! Maximum daily linear mortality rate (1/d) minmPhS == 0.01d0 ! Minimum daily linear mortality rate (1/d) maxmPhS == 0.085d0 ! Maximum daily linear mortality rate (1/d) NcritPhS == 0.6d0 ! Critical NO3 for mortality ! Large Phytoplankton senescence minmPhL == 0.1d0 ! Minimum daily linear mortality rate (1/d) maxmPhL == 0.85d0 ! Maximum daily linear mortality rate (1/d) minmPhL == 0.01d0 ! Minimum daily linear mortality rate (1/d) maxmPhL == 0.085d0 ! Maximum daily linear mortality rate (1/d) NcritPhL == 0.6d0 ! Critical NO3 for mortality ! Zooplankton linear mortality mMZS == 0.005d0 ! Daily mortality for Small Microzoo. (1/d) mMZL == 0.005d0 ! Daily mortality for Large Microzoo. (1/d) mCop == 0.001d0 ! Daily mortality for Copepods (1/d) mNCa == 0.001d0 ! Daily mortality for Neocalanus (1/d) mEup == 0.001d0 ! Daily mortality for Euphausiids (1/d) ! Zooplankton nonlinear mortality / predation closure mpredMZS == 0.001d0 ! Daily mortality for Small Microzoo. (1/d) mpredMZL == 0.001d0 ! Daily mortality for Large Microzoo. (1/d) mpredCop == 0.005d0 ! Daily mortality for Copepods (1/d) mpredNCa == 0.01d0 ! Daily mortality for Neocalanus (1/d) mpredEup == 0.01d0 ! Daily mortality for Euphausiids (1/d) ! Sinking and regeneration terms regen == 0.4d0 ! Regeneration rate for Ammonium dgrad == 0.10d0 ! Degradation rate for Detritus wPhS == 0.00d0 ! Sinking rate for Small Phytoplankton (m/d) wPhL == 0.2d0 ! Sinking rate for Large Phytoplankton (m/d) wDet == 3.0d0 ! Sinking rate for Detritus (m/d) ! Terms to define the Iron climatology field ( 2 nM = no iron limitation) Feinlo == 2.0d0 ! inshore/surface (micromol Fe m-3 or nM) Feinhi == 2.0d0 ! inshore/deep (micromol Fe m-3 or nM) Feinh == 200.0d0 ! inshore isobath of transition (m) Feofflo == 0.05d0 ! offshore/surface (micromol Fe m-3 or nM) Feoffhi == 0.60d0 ! offshore/deep (micromol Fe m-3 or nM) Feoffh ==1500.0d0 ! offshore isobath of transition (m) ! Iron limitation ! kfePhS == 0.3d0 ! half-saturation const. PhS (umol per m-3) kfePhS == 0.3d0 ! half-saturation const. PhS (umol per m-3) kfePhL == 0.6d0 ! half-saturation const. PhL (umol per m-3) FeC == 1.667d-4 ! Fe(umol):Carbon(mg) is 2 umol Fe : mol C ! Diapause NCmaxz == 500.0d0 ! highest depth of diapausing NC (m) wNCrise == 12.0d0 ! upward velocity (m/day), tuned not data wNCsink == 11.0d0 ! downward velocity (m/day), tuned not data RiseStart== 0.0d0 ! Date NC begin to move upward (Day of Year) RiseEnd == 60.0d0 ! Date NC stop moving upward (Day of Year) SinkStart== 156.0d0 ! Date NC begin to move downward (Day of Year) SinkEnd == 366.0d0 ! Date NC stop moving downward (Day of Year) ! Lateral, constant, harmonic/biharmonic horizontal diffusion of biological ! tracer: [1:NBT,Ngrids]. TNU2 == 10*0.0d0 0.0d0 ! m2/s TNU4 == 10*0.0d0 0.0d0 ! m4/s ! Vertical mixing coefficients for biological tracers: [1:NBT,Ngrids]. AKT_BAK == 10*0.0d-4 0.0d-4 ! m2/s ! Nudging/relaxation time scales, inverse scales will be computed ! internally: [1:NBT,Ngrids]. TNUDG == 10*360.0d0 360.0d0 ! days ! Logical switches (TRUE/FALSE) to activate writing of biological tracers ! into HISTORY output file: [1:NBT,Ngrids]. Hout(idTvar) == 10*T T ! ! GLOSSARY: ! ========= ! !------------------------------------------------------------------------------ ! Read in Gulf of Alaska NPZ Biological Model Parameters. !------------------------------------------------------------------------------ ! Lbiology Switch to control the computation of a particular module within ! nested and/or multiple connected grids. By default this switch ! is set to TRUE in "mod_scalars" for all grids. Ngrids values ! are expected. The USER has the option, for example, to compute ! the biology in just one of the nested grids. If so, this switch ! needs to be consistent with the dimension parameter NBT in ! "mod_param". In order to make the model more efficient in ! memory usage, NBT(:) should be zero in such grids. ! ! BioIter Maximum number of iterations to achieve convergence of ! the nonlinear solution. ! ! TNU2 Lateral, Laplacian, constant, mixing coefficient (m2/s) for ! biological tracer variables; [1:NBT,1:Ngrids] values are ! expected. If variable horizontal diffusion is activated, TNU2 ! is the mixing coefficient for the largest grid-cell in the domain. ! ! TNU4 Lateral, biharmonic, constant, mixing coefficient (m4/s) for ! biological tracer variables; [1:NBT,1:Ngrids] values are ! expected. If variable horizontal diffusion is activated, TNU4 ! is the mixing coefficient for the largest grid-cell in the domain. ! ! AKT_BAK Background vertical mixing coefficient (m2/s) for biological ! tracer variables, [1:NBT,1:Ngrids] values are expected. ! ! TNUDG Nudging time scale (days), [1:NBT,1:Ngrids]. Inverse scale will ! be computed internally. ! ! Hout Logical switches to write out biological tracers into HISTORY ! NetCDF, [1:NBT,1:Ngrids] values are expected. !