* * convolvej.F * * This software was developed by the Thermal Modeling and Analysis * Project(TMAP) of the National Oceanographic and Atmospheric * Administration's (NOAA) Pacific Marine Environmental Lab(PMEL), * hereafter referred to as NOAA/PMEL/TMAP. * * Access and use of this software shall impose the following * obligations and understandings on the user. The user is granted the * right, without any fee or cost, to use, copy, modify, alter, enhance * and distribute this software, and any derivative works thereof, and * its supporting documentation for any purpose whatsoever, provided * that this entire notice appears in all copies of the software, * derivative works and supporting documentation. Further, the user * agrees to credit NOAA/PMEL/TMAP in any publications that result from * the use of this software or in any product that includes this * software. The names TMAP, NOAA and/or PMEL, however, may not be used * in any advertising or publicity to endorse or promote any products * or commercial entity unless specific written permission is obtained * from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP * is not obligated to provide the user with any support, consulting, * training or assistance of any kind with regard to the use, operation * and performance of this software nor to provide the user with any * updates, revisions, new versions or "bug fixes". * * THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR ANY SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. ** Ansley Manke * Feb 1999 * * This external function convolves the component grid, com, with the weight * function, wt along the J axis (see Ferret routine CONVOLVE) * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE convolvej_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT ('Convolve J component of variable with weight function') CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_args(id, 2) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'COM') CALL ef_set_arg_desc(id, arg, . 'Variable in Y (and perhaps X,Z,T) to convolve') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'WEIGHT') CALL ef_set_arg_desc(id, arg, 'Weight function') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE convolvej_compute (id, arg_1, arg_2, result ) * * * From FERRET subroutine CONVOLVE, for the j-axis. * * convolve the component grid, com, with the weight function, wt * along axis idim * note: the component context may not be of adequate size for the full * calculation. Missing data flags will be inserted where computation is * impossible * also: when bad data points are encountered in the component data all * result data depending on it are flagged as bad, too INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) . REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V REAL comp, sum, weight INTEGER i, j, k, l INTEGER xlen, ylen, zlen, tlen, jj INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER wlen, hlen CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) * CONVOLVE ALONG Y AXIS (arg_1) using weights (arg_2) * Half the weighting function; weights from -hlen to hlen. xlen = (arg_hi_ss(X_AXIS,ARG2) - arg_lo_ss(X_AXIS,ARG2) + 1) ylen = (arg_hi_ss(Y_AXIS,ARG2) - arg_lo_ss(Y_AXIS,ARG2) + 1) zlen = (arg_hi_ss(Z_AXIS,ARG2) - arg_lo_ss(Z_AXIS,ARG2) + 1) tlen = (arg_hi_ss(T_AXIS,ARG2) - arg_lo_ss(T_AXIS,ARG2) + 1) wlen = max(xlen, ylen, zlen, tlen) IF (MOD(wlen,2) .EQ. 0) wlen = wlen + 1 hlen = wlen/ 2 i1 = arg_lo_ss(X_AXIS,ARG1) DO 500 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) DO 400 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) DO 300 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) DO 200 J = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) sum = 0.0 i2 = arg_lo_ss(X_AXIS,ARG2) j2 = arg_lo_ss(Y_AXIS,ARG2) k2 = arg_lo_ss(Z_AXIS,ARG2) l2 = arg_lo_ss(T_AXIS,ARG2) DO 100 jj = -hlen, hlen IF (j1+jj .LT. arg_lo_ss(Y_AXIS,ARG1) .OR. . j1+jj .GT. arg_hi_ss(Y_AXIS,ARG1) ) THEN result(i,j,k,l) = bad_flag_result GOTO 190 ELSE comp = arg_1(i1,j1+jj,k1,l1) IF (i2 .LT. arg_lo_ss(X_AXIS,ARG2) .OR. . i2 .GT. arg_hi_ss(X_AXIS,ARG2) .OR. . j2 .LT. arg_lo_ss(Y_AXIS,ARG2) .OR. . j2 .GT. arg_hi_ss(X_AXIS,ARG2) .OR. . k2 .LT. arg_lo_ss(Z_AXIS,ARG2) .OR. . k2 .GT. arg_hi_ss(Z_AXIS,ARG2) .OR. . l2 .LT. arg_lo_ss(T_AXIS,ARG2) .OR. . l2 .GT. arg_hi_ss(T_AXIS,ARG2)) THEN weight = 0. ELSE weight = arg_2(i2,j2,k2,l2) ENDIF IF ( comp .EQ. bad_flag(ARG1)) THEN result(i,j,k,l) = bad_flag_result GOTO 190 ELSE sum = sum + comp* weight ENDIF ENDIF i2 = i2 + arg_incr(X_AXIS,ARG2) j2 = j2 + arg_incr(Y_AXIS,ARG2) k2 = k2 + arg_incr(Z_AXIS,ARG2) l2 = l2 + arg_incr(T_AXIS,ARG2) 100 CONTINUE result(i,j,k,l) = sum 190 j1 = j1 + arg_incr(Y_AXIS,ARG1) 200 CONTINUE l1 = l1 + arg_incr(T_AXIS,ARG1) 300 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) 400 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) 500 CONTINUE RETURN END