* * ann_trend.f * * ansley manke * oct 1998 * * Remove annual variation and trend from a 2-d field. Uses Jimmy Larsen's * time series code. * * * in this subroutine we provide information about * the function. the user configurable information * consists of the following: * * descr text description of the function * * num_args required number of arguments * * axis_inheritance type of axis for the result * ( custom, implied_by_args, normal, abstract ) * custom - user defined axis * implied_by_args - same axis as the incoming argument * normal - the result is normal to this axis * abstract - an axis which only has index values * * piecemeal_ok for memory optimization: * axes where calculation may be performed piecemeal * ( yes, no ) * * * for each argument we provide the following information: * * name text name for an argument * * unit text units for an argument * * desc text description of an argument * * axis_influence are this argument's axes the same as the result grid? * ( yes, no ) * * axis_extend how much does ferret need to extend arg limits relative to result * SUBROUTINEann_trend_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg ************************************************************************ * user configurable portion | * | * v CALL ef_set_desc(id, . 'compute eofs and time functions for x-y field w/gaps' ) CALL ef_set_num_args(id, 1) CALL ef_set_axis_inheritance(id, implied_by_args, . implied_by_args, implied_by_args, implied_by_args) CALL ef_set_piecemeal_ok(id, no, no, no, no) arg = 1 CALL ef_set_arg_name(id, arg, 'a') CALL ef_set_arg_unit(id, arg, ' ') CALL ef_set_arg_desc(id, arg, 'variable in x,y,t') CALL ef_set_axis_influence(ID, ARG, YES, YES, YES, YES) * ^ * | * user configurable portion | ************************************************************************ RETURN END * * in this subroutine we compute the result * SUBROUTINE ann_trend_compute(id, arg_1, result) * arg_1 variable, function of (x,y,t) * result is the same variable with trend and annual variation removed INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id real bad_flag(ef_max_args), bad_flag_result real arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) real result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * after initialization, the 'res_' arrays contain indexing information * for the result axes. the 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,ef_max_args), arg_hi_ss(4,ef_max_args), . arg_incr(4,ef_max_args) INTEGER nwrk, nt INTEGER i, j, k, l, i1, j1, k1, l1 REAL t_inc PARAMETER (nwrk=1000) REAL r(nwrk), gap(nwrk), fq, ssttmp(nwrk) REAL w(50) INTEGER nf, nyr PARAMETER (nf=5, nyr=24) CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) t_inc = res_incr(t_axis) IF (t_inc .eq. 0) t_inc = 1 nt = (res_hi_ss(t_axis) - res_lo_ss(t_axis) + 1)/ t_inc IF (nt .gt. nwrk) THEN PRINT *, ' ann_trend.F: set dimension for work arrays >=', nt GO TO 999 ENDIF fq = 1.0 / (7200.0*24.*365.25/12.0) CALL prolate(w, nyr, 1) j1 = arg_lo_ss(Y_AXIS,ARG1) DO 500 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS), . res_incr(Y_AXIS) i1 = arg_lo_ss(X_AXIS, ARG1) DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS), . res_incr(X_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) k = res_lo_ss(Z_AXIS) nt = 1 l1 = arg_lo_ss(T_AXIS, ARG1) DO 100 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS), . res_incr(T_AXIS) ssttmp(nt) = arg_1(i1,j1,k1,l1) IF (ssttmp(nt) .eq. bad_flag(ARG1)) THEN ssttmp(nt) = bad_flag_result ELSE ssttmp(nt) = arg_1(i1,j1,k1,l1) ENDIF nt = nt + 1 l1 = l1 + arg_incr(T_AXIS,ARG1) 100 CONTINUE nt = nt - 1 CALL annualdai (fq, nt, ssttmp, r, gap, nf, . bad_flag_result) CALL trendflag2 (nt, ssttmp, bad_flag_result) CALL piw (ssttmp, r, w, nt, bad_flag_result) nt = 1 DO 200 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) result(i,j,k,l) = ssttmp(nt) nt = nt + 1 200 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) 400 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) 500 CONTINUE return 999 continue return end * ^ * | * user configurable portion | ************************************************************************