* * avet.F * * Jonathan Callahan * Feb 19th 1998 * * Returns the argument averaged over the T axis * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE avet_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CALL ef_set_desc(id, . '(demonstration function) returns the time average' ) CALL ef_set_num_args(id, 1) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, NORMAL) CALL ef_set_piecemeal_ok(id, YES, YES, YES, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'A') CALL ef_set_arg_desc(id, arg, 'data to be time averaged') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE avet_compute(id, arg_1, result) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i, j, k, l INTEGER i1, j1, k1, l1 REAL denominator REAL sum LOGICAL data_exists CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) i1 = arg_lo_ss(X_AXIS,ARG1) DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) * * Loop through time and calculate a running sum. * sum = 0 denominator = 0 data_exists = .FALSE. l = res_lo_ss(T_AXIS) DO 100 l1=arg_lo_ss(T_AXIS,ARG1), arg_hi_ss(T_AXIS,ARG1) IF ( arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1) ) THEN result(i,j,k,l) = bad_flag_result ELSE data_exists = .TRUE. denominator = denominator + 1.0 sum = sum + arg_1(i1,j1,k1,l1) END IF 100 CONTINUE * * If we had any good data, calculate the average. * IF ( data_exists ) THEN result(i,j,k,l) = sum/denominator END IF k1 = k1 + arg_incr(Z_AXIS,ARG1) 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) 400 CONTINUE * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END