* * dates.F * * * This function tests ef_get_axis_dates * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE dates_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT ('test ef_get_axis_dates') CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_work_arrays(id, 1) CALL ef_set_num_args(id, 1) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'var') CALL ef_set_arg_desc(id, arg, 'data with time axis') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE dates_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work array X/Y/Z/T dimensions * * ef_set_work_array_lens(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER array_num, nt INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) * This is going to be a double precision array, the time axis coordinates * so allocate 2* the size of the time axis array_num = 1 nt = 2*(arg_hi_ss(T_AXIS,ARG1) - arg_lo_ss(T_AXIS,ARG1) + 1) CALL ef_set_work_array_dims(id, array_num, 1,1,1,1, nt,1,1,1) CALL ef_set_work_array_dims(id, array_num, 1,1,1,1, 1,1,1,nt) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * In this subroutine we compute the result * SUBROUTINE dates_compute(id, arg_1, result, taxdat) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) REAL*8 taxdat(wrk1lox:wrk1hix, wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz, wrk1lot:wrk1hit/2) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER id, iarg, arg INTEGER i, j, k, l, m INTEGER i1, j1, k1, l1 INTEGER numtimes CHARACTER*20 datebuf(20) CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) iarg = 1 numtimes = arg_hi_ss(T_AXIS,ARG1) - arg_lo_ss(T_AXIS,ARG1) + 1 CALL ef_get_coordinates (id, iarg, T_AXIS, . arg_lo_ss(T_AXIS, ARG1), arg_hi_ss(T_AXIS, ARG1), taxdat) print *, (taxdat(1,1,1,L),L=1,numtimes) CALL ef_get_axis_dates (id, iarg, taxdat, numtimes, datebuf) print *, ' datebuf' i1 = arg_lo_ss(X_AXIS,ARG1) DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) result(i,j,k,l) = arg_1(i1,j1,k1,l1) print *, datebuf(L) l1 = l1 + arg_incr(T_AXIS,ARG1) 100 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) 400 CONTINUE RETURN END