* * findlo.F * * Ansley Manke * July 02, 2001 * * This function locates local extrema, returning "lows". * * 1/21/01 change order of axes: pts listed on X axis, J index * gives component of result (x,y,z) * And change arguments 2 and 3 to RANGE rather than # Grid cells * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE findlo_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*120 fcn_descr WRITE (fcn_descr,100) CALL ef_set_desc(id, fcn_descr) 100 FORMAT('Find local minima of var, return', . ' LOWS on X axis. j=1 xpos,j=2 ypos,j=3 LO value') CALL ef_set_num_args(id, 3) CALL ef_set_axis_inheritance(id, ABSTRACT, ABSTRACT, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) CALL ef_set_num_work_arrays(id, 4) arg = 1 CALL ef_set_arg_name(id, arg, 'A') CALL ef_set_arg_unit(id, arg, ' ') CALL ef_set_arg_desc(id, arg, 'var in X, Y and optionally Z, T') CALL ef_set_axis_influence(id, arg, NO, NO, YES, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'XRANGE') CALL ef_set_arg_unit(id, arg, ' ') CALL ef_set_arg_desc(id, arg, .'Find local minima in neighborhood +- XRANGE, data units') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 3 CALL ef_set_arg_name(id, arg, 'YRANGE') CALL ef_set_arg_unit(id, arg, ' ') CALL ef_set_arg_desc(id, arg, .'Find local minima in neighborhood +- YRANGE, data units') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we provide information about the lo and hi * limits associated with each abstract or custom axis. The user * configurable information consists of the following: * * lo_ss lo subscript for an axis * * hi_ss hi subscript for an axis * SUBROUTINE findlo_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER my_lo, my_hi, nx, ny INTEGER arg INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * * Use utility functions to get context information about the argument. * CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_set_axis_limits(id, Y_AXIS, 1, 3) my_lo = 1 my_hi = 1 arg = 1 nx = arg_hi_ss(X_AXIS,arg) - arg_lo_ss(X_AXIS,arg) + 1 ny = arg_hi_ss(Y_AXIS,arg) - arg_lo_ss(Y_AXIS,arg) + 1 my_hi = nx* ny ! an absolute upper bound CALL ef_set_axis_limits(id, X_AXIS, my_lo, my_hi) my_lo = 1 my_hi = 1 * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE findlo_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER mx1, my1, mxy, mydim INTEGER iwork INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) mx1 = 1 + arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1) my1 = 1 + arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1) mydim = 3 mxy = mx1 * my1 * xyfield iwork = 1 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . mx1, my1, 1, 1) * zminlist iwork = 2 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . mydim, mxy, 1, 1) * xax iwork = 3 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 2*mx1, 1, 1, 1) * yax iwork = 4 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 2*my1, 1, 1, 1) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE findlo_compute(id, arg_1, arg_2, arg_3, result, . xyfield, zminlist, xax, yax) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, . mem3loz:mem3hiz, mem3lot:mem3hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i, j, k, l, i1, j1, k1, l1, arg, nx, ny, nzmin, ip, jp, . neigh_x, neigh_y REAL dx, dy, xrange, yrange * Dimension the work arrays. REAL xyfield(wrk1lox:wrk1hix, wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz, wrk1lot:wrk1hit) REAL zminlist(wrk2lox:wrk2hix, wrk2loy:wrk2hiy, . wrk2loz:wrk2hiz, wrk2lot:wrk2hit) REAL*8 xax(wrk3lox:wrk3hix/2, wrk3loy:wrk3hiy, . wrk3loz:wrk3hiz, wrk3lot:wrk3hit) REAL*8 yax(wrk4lox:wrk4hix/2, wrk4loy:wrk4hiy, . wrk4loz:wrk4hiz, wrk4lot:wrk4hit) CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) * Get the axis coordinates arg = 1 CALL ef_get_coordinates(id, arg, X_AXIS, arg_lo_ss(X_AXIS,arg), . arg_hi_ss(X_AXIS,arg), xax) CALL ef_get_coordinates(id, arg,Y_AXIS, arg_lo_ss(Y_AXIS,arg), . arg_hi_ss(Y_AXIS,arg), yax) nx = arg_hi_ss(X_AXIS,arg) - arg_lo_ss(X_AXIS,arg) + 1 ny = arg_hi_ss(Y_AXIS,arg) - arg_lo_ss(Y_AXIS,arg) + 1 dx = xax(2,1,1,1) - xax(1,1,1,1) dy = yax(2,1,1,1) - yax(1,1,1,1) * Get the parameters neigh_x, neigh_y, to determine the region in which relative * mins are found: C A RELATIVE MINIMUM (OR MAXIMUM) IS DEFINED TO BE THE LOWEST (OR HIGHEST) C POINT WITHIN A CERTAIN NEIGHBORHOOD OF THE POINT. THE NEIGHBORHOOD USED C HERE IS + OR - neigh_x IN THE X DIRECTION AND + OR - neigh_y IN THE Y C DIRECTION CALL ef_get_one_val (id, ARG2, xrange) neigh_x = MAX(1, INT (xrange/dx)) CALL ef_get_one_val (id, ARG3, yrange) neigh_y = MAX(1, INT (yrange/dy)) * For each level and each time, call minminmax to get the minima. * Determine the coordinates of the min's and put with the min value * into the result k1 = arg_lo_ss(Z_AXIS,ARG1) DO 400 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) DO 300 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) DO 200 j = 1, ny i1 = arg_lo_ss(X_AXIS,ARG1) DO 100 i = 1, nx xyfield(i,j,1,1) = arg_1(i1,j1,k1,l1) i1 = i1 + arg_incr(X_AXIS,ARG1) 100 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) 200 CONTINUE CALL MINMINMAX (xyfield, nx, nx, ny, neigh_x, neigh_y, . bad_flag(ARG1), zminlist, nzmin) C result(i,1,k,l) = X index of max C result(i,2,k,l) = Y index of max C result(i,3,k,l) = z value at max DO 210 i = 1, nzmin ip = INT(zminlist(1,i,1,1)) jp = INT(zminlist(2,i,1,1)) result(i,1,k,l) = xax(ip,1,1,1) result(i,2,k,l) = yax(jp,1,1,1) result(i,3,k,l) = zminlist(3,i,1,1) 210 CONTINUE C Fill end of result with missing-data flags DO 230 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) DO 220 i = nzmin+1, res_hi_ss(X_AXIS) result(i,j,k,l) = bad_flag_result 220 CONTINUE 230 CONTINUE l1 = l1 + arg_incr(T_AXIS,ARG1) 300 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) 400 CONTINUE * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END