* * ave_scat2grid_t.F * * * This software was developed by the Thermal Modeling and Analysis * Project(TMAP) of the National Oceanographic and Atmospheric * Administration's (NOAA) Pacific Marine Environmental Lab(PMEL), * hereafter referred to as NOAA/PMEL/TMAP. * * Access and use of this software shall impose the following * obligations and understandings on the user. The user is granted the * right, without anx fee or cost, to use, copy, modify, alter, enhance * and distribute this software, and anx derivative works thereof, and * its supporting documentation for anx purpose whatsoever, provided * that this entire notice appears in all copies of the software, * derivative works and supporting documentation. Further, the user * agrees to credit NOAA/PMEL/TMAP in anx publications that result from * the use of this software or in anx product that includes this * software. The names TMAP, NOAA and/or PMEL, however, may not be used * in anx advertising or publicity to endorse or promote anx products * or commercial entity unless specific written permission is obtained * from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP * is not obligated to provide the user with anx support, consulting, * training or assistance of anx kind with regard to the use, operation * and performance of this software nor to provide the user with anx * updates, revisions, new versions or "bug fixes". * * THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND Anx EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR Anx SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR Anx DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. * * Ansley Manke * Sep 2004 * Inputs are a set of T coordinates and a variable on an abstract axis, and an * output time axis. Returns a time series which is the average of the variable, * based on the number of points that fall inside of each T cell. * From scat2grid_t.F * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE ave_scat2grid_t_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg ************************************************************************ * USER CONFIGURABLE PORTION | * | * V CHARACTER*126 buff WRITE (buff, 10) 10 FORMAT ( . 'Compute average of a variable in each cell of output time axis') CALL ef_set_desc(id, buff) CALL ef_set_num_args(id, 3) CALL ef_set_axis_inheritance(id, NORMAL, NORMAL, NORMAL, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) CALL ef_set_num_work_arrays(id, 2) * output grid is determined by argument 3. arg = 1 CALL ef_set_arg_name(id, arg, 'TPTS') CALL ef_set_arg_desc(id, arg, . 'T coordinates of scattered input time coordinates') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 2 CALL ef_set_arg_name(id, arg, 'VPTS') CALL ef_set_arg_desc(id, arg, . 'Variable at times in TPTS') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 3 CALL ef_set_arg_name(id, arg, 'TAXIS') CALL ef_set_arg_desc(id, arg, . 'Output time axis') CALL ef_set_axis_influence(id, arg, NO, NO, NO, YES) * ^ * | * USER CONFIGURABLE PORTION | ************************************************************************ RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE ave_scat2grid_t_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER ntout, nt2 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) ntout = 1 + arg_hi_ss(T_AXIS,ARG3) - arg_lo_ss(T_AXIS,ARG3) nt2 = (ntout+1)* 2 * tax output t axis CALL ef_set_work_array_dims (id, 1, 1, 1, 1, 1, nt2, 1, 1, 1) * workspace for computing average; same as result T axis CALL ef_set_work_array_dims (id, 2, . arg_lo_ss(T_AXIS,ARG3), 1, 1, 1, . arg_hi_ss(T_AXIS,ARG3), 1, 1, 1) RETURN END * * In this subroutine we compute the result * SUBROUTINE ave_scat2grid_t_compute(id, arg_1, arg_2, arg_3, . result, tax, counts) * arg_1 tpts Scattered t values to be gridded. * arg_2 taxis to use for output INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, mem3loz:mem3hiz, . mem3lot:mem3hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) ************************************************************************ * USER CONFIGURABLE PORTION | * | * V INTEGER i, j, k, l, m, n INTEGER i1, i1n, i3, i3n, ntgrid INTEGER ntpts, nvpts REAL tt, vv CHARACTER*250 errtxt REAL factr * variables for checking axis characteristics (modulo axes) CHARACTER ax_name(4)*16, ax_units(4)*16 LOGICAL backward(4), modulot(4), regular(4) * Dimension the work arrays REAL*8 tax(wrk1lox:wrk1hix/2, wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz, wrk1lot:wrk1hit) REAL counts(wrk2lox:wrk2hix, wrk2loy:wrk2hiy, . wrk2loz:wrk2hiz, wrk2lot:wrk2hit) REAL*8 top_box CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) * Check to see if output axis is modulo CALL ef_get_axis_info (id, 3, ax_name, ax_units, backward, . modulot, regular) * Find number of points in scattered input points. 1-D arrays defining the * scattered data points may lie on the X, Y, Z, or T axis of the input argument ntpts = 0 DO 100 m = X_AXIS, T_AXIS IF (arg_lo_ss(m,ARG1) .GE. 1) THEN i1 = arg_lo_ss(m,ARG1) i1n = arg_hi_ss(m,ARG1) if (i1n-i1 .NE. 0) ntpts = 1 + (i1n - i1) ENDIF 100 CONTINUE * Check that arguments 1 and 2 have the same number of values nvpts = 0 DO 200 m = X_AXIS, T_AXIS IF (arg_lo_ss(m,ARG2) .GE. 1) THEN i1 = arg_lo_ss(m,ARG2) i1n = arg_hi_ss(m,ARG2) if (i1n-i1 .NE. 0) nvpts = 1 + (i1n - i1) ENDIF 200 CONTINUE IF (ntpts .EQ. 0) GOTO 900 IF (nvpts .NE. ntpts) THEN errtxt = 'arguments 1 and 2 must have the same number of values' GOTO 900 ENDIF * Check tax is a T axis i3 = arg_lo_ss(T_AXIS,ARG3) i3n = arg_hi_ss(T_AXIS,ARG3) ntgrid = i3n - i3 + 1 IF (i3 .EQ. ef_unspecified_int4) THEN WRITE (errtxt, *) 'Third argument must be a T axis' GO TO 999 ENDIF * Get coordinates of output axis. call ef_get_coordinates(id, ARG3, T_AXIS, . arg_lo_ss(T_AXIS, ARG3), arg_hi_ss(T_AXIS, ARG3), tax) * Get cell boundaries CALL ef_get_box_lo_lim (id, ARG3, T_AXIS, . arg_lo_ss(T_AXIS, ARG3), arg_hi_ss(T_AXIS, ARG3), tax) CALL ef_get_box_hi_lim (id, ARG3, T_AXIS, . arg_hi_ss(T_AXIS, ARG3), arg_hi_ss(T_AXIS, ARG3), top_box) L = res_hi_ss(T_AXIS)+1 tax(L,1,1,1) = top_box * Compute result * Initialize counts i = res_lo_ss(X_AXIS) j = res_lo_ss(Y_AXIS) k = res_lo_ss(Z_AXIS) DO 300 L = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) result(i,j,k,l)= 0. counts(L,1,1,1)= 0. 300 CONTINUE * Loop over input tpts L = res_lo_ss(T_AXIS) DO 500 n = 1, ntpts CALL pickout (arg_1, n, tt) CALL pickout (arg_2, n, vv) * If an output axis is modulo, apply modulo adjustment to that coordinate * of the scattered point. IF (modulot(4)) CALL modscat (tax, ntgrid, 1, tt) IF ( tt .NE. bad_flag(ARG3) .AND. . vv .NE. bad_flag(ARG2) ) THEN DO 400 L = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) IF (n .EQ. 1 .AND. tt .EQ. tax(L,1,1,1) ) THEN result(i,j,k,l) = result(i,j,k,l) + vv counts(L,1,1,1) = counts(L,1,1,1) + 1 ELSE IF (tt .GT. tax(L,1,1,1) .AND. . tt .LE. tax(L+1,1,1,1) ) THEN result(i,j,k,l) = result(i,j,k,l) + vv counts(L,1,1,1) = counts(L,1,1,1) + 1 ENDIF 400 CONTINUE ENDIF 500 CONTINUE * Compute average DO 600 L = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) IF (counts(L,1,1,1) .GT. 0.) THEN result(i,j,k,l) = result(i,j,k,l)/ counts(L,1,1,1) ELSE result(i,j,k,l) = bad_flag_result ENDIF 600 CONTINUE RETURN 900 CONTINUE 999 CALL EF_BAIL_OUT(id, errtxt) RETURN * ^ * | * USER CONFIGURABLE PORTION | ************************************************************************ END SUBROUTINE pickout (atim, n, val) * ACM 5/2003 * Called from the ave_scat2grid_t function. * Pick out nth item from atim, which is really 4-D * with normal axes on three of the four axes. REAL atim(*) REAL val INTEGER n val = atim(n) RETURN END