* rr_adv_umetric.F * * Rick Romea * Jan. 24, 2000 * * Computes the zonal nonlinear advective metric: uv tan(theta) / a * Units : cm/s/s * MOM2 Grid: U * ******************************************************************* SUBROUTINE RR_adv_umetric_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc (id, . 'Zonal momentum nonlinear metric term (cm/s^2);MOM2 U Grid') CALL ef_set_num_args (id, 2) CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok (id, NO, NO, YES, YES) ! Define first argument (U) CALL ef_set_arg_name (id, ARG1, 'U') CALL ef_set_arg_desc (id, ARG1, . 'Zonal velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) ! Define second argument (V) CALL ef_set_arg_name (id, ARG2, 'V') CALL ef_set_arg_desc (id, ARG2, . 'Meridional velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG2, 'cm/sec') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2,YES,YES,YES,YES) END SUBROUTINE RR_adv_umetric_compute(id, arg_1, arg_2, result) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL result (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER ilat CHARACTER *16 ax_name(4) CHARACTER *16 ax_units(4) LOGICAL backward(4) LOGICAL modulo(4) LOGICAL regular(4) REAL tng REAL*8 yU(1024) INCLUDE 'rr_parameters.h' ! Get axis data CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) CALL ef_get_coordinates (id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG1), . arg_hi_ss(Y_AXIS,ARG1), yU) ! Check axis units: bail out if not lat and lon. CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, . backward, modulo, regular) IF ( ax_units(1) .NE. 'deg' .AND. . ax_units(1) .NE. 'lon' .AND. . ax_units(1) .NE. 'degrees_E' .AND. . ax_units(1) .NE. 'longitude' .AND. . ax_units(1) .NE. 'Longitude' .AND. . ax_units(1) .NE. 'LONGITUDE' ) THEN WRITE (6,*)'Longitude axis units =', ax_units(1) ! CALL ef_bail_out(id,'Longitude axis must be in degrees') ENDIF IF ( ax_units(2) .NE. 'deg' .AND. . ax_units(2) .NE. 'lat' .AND. . ax_units(2) .NE. 'degrees_N' .AND. . ax_units(2) .NE. 'latitude' .AND. . ax_units(2) .NE. 'Latitude' .AND. . ax_units(2) .NE. 'LATITUDE' ) THEN WRITE (6,*)'Latitude axis units =', ax_units(2) !CALL ef_bail_out(id,'Latitude axis must be in degrees') ENDIF l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) iLat = 1 j1 = arg_lo_ss(Y_AXIS,ARG1) j2 = arg_lo_ss(Y_AXIS,ARG2) DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) IF ( DABS(yU(iLat)) .EQ. 90.d0 ) THEN tng = 0. ! handle special case ELSE tng = TAN (SNGL(yU(iLat)) * Degrees_to_radians) ENDIF i1 = arg_lo_ss(X_AXIS,ARG1) i2 = arg_lo_ss(X_AXIS,ARG2) DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_2(i2,j2,k2,l2) .EQ. bad_flag(ARG2) )THEN result(i,j,k,l) = bad_flag_result ELSE result(i,j,k,l) = tng / RR_radius . * ARG_1(i1,j1,k1,l1) . * ARG_2(i2,j2,k2,l2)*sec_per_month ENDIF i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) ENDDO iLat = iLat + 1 j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) ENDDO k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) ENDDO END