* rr_adv_vz.F * * Rick Romea * March 16, 2000 * * Meridional nonlinear advective term: -w dv/dz * Units : cm/s/s * MOM2 Grid: U * ******************************************************************* SUBROUTINE RR_adv_vz_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc (id, .'-w(dv/dz) nonlinear advective momentum term(cm/s^2);MOM2 U Grid') CALL ef_set_num_args (id, 3) CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok (id, NO, NO, NO, NO) ! Define first argument (V) CALL ef_set_arg_name (id, ARG1, 'V') CALL ef_set_arg_desc (id, ARG1, . 'Meridional velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) CALL ef_set_axis_extend (id, ARG1, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Z_AXIS,0,+1) ! Define second argument (W) CALL ef_set_arg_name (id, ARG2, 'W') CALL ef_set_arg_desc (id, ARG2, . 'Vertical velocity, at T cell bottom on the MOM2 Grid. ') CALL ef_set_arg_unit (id, ARG2, 'cm/sec') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2, NO, NO, NO, YES) CALL ef_set_axis_extend (id, ARG2, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Z_AXIS,0,+1) ! Define third argument (TEMP) CALL ef_set_arg_name (id, ARG3, 'TEMP') CALL ef_set_arg_desc (id, ARG3, . 'Potential temperature, required to access MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG3, 'deg-C') CALL ef_set_arg_type (id, ARG3, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG3, NO, NO, YES, YES) CALL ef_set_axis_extend (id, ARG3, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Z_AXIS,0,+1) END SUBROUTINE RR_adv_vz_compute(id, arg_1, arg_2, arg_3, result) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL arg_3 (mem3lox:mem3hix, mem3loy:mem3hiy, . mem3loz:mem3hiz, mem3lot:mem3hit) REAL result (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 REAL*8 yU(1024) REAL*8 xU(1024) REAL*8 zW(1024) REAL*8 yT(1024) REAL*8 xT(1024) INTEGER ilat INTEGER ilon INTEGER iZ CHARACTER*16 ax_name(4) CHARACTER*16 ax_units(4) LOGICAL backward(4) LOGICAL modulo(4) LOGICAL regular(4) REAL dxu, dyu REAL dus, dun, duw, due REAL adv_fb, adv_vbu REAL csu, cst INCLUDE 'rr_parameters.h' C********************************************************************* C c dzt = vertical height of "u,v" or "t" grid box (in cm) c dxu = longitudinal width of "u,v" grid box at the equator (cm) c dyu = latitudinal height of "u,v" grid box (cm) C c dus = yu(j) - yt(j) c dun = yt(j+1) - yu(j) c duw = xu(i) - xt(i) c due = xt(i+1) - xu(i) C c yu(j) = latitude of the jth "u,v" point in degrees c yt(j) = latitude of the jth "t" point in degrees c xt(i) = longitude of the ith "t" point in degrees c xu(i) = longitude of the ith "u,v" point in degrees C C********************************************************************* dxu(i) = SNGL (xT(i+1) - xT(i)) * Longitude_to_cm dyu(j) = SNGL (yT(j+1) - yT(j)) * Latitude_to_cm dus(j) = SNGL (yU(j) - yT(j)) * Latitude_to_cm dun(j) = SNGL (yT(j+1) - yU(j)) * Latitude_to_cm duw(i) = SNGL (xU(i) - xT(i)) * Longitude_to_cm due(i) = SNGL (xT(i+1) - xU(i)) * Longitude_to_cm cst(j) = cos(SNGL(yT(j)) * Degrees_to_radians) csu(j) = cos(SNGL(yU(j)) * Degrees_to_radians) adv_vbu(i,j,k,l,iLat,iLon) = . ( arg_2(i, j, k,l) * dus(iLat) * duw(iLon) * cst(iLat) . + arg_2(i+1,j, k,l) * dus(iLat) * due(iLon) * cst(iLat) . + arg_2(i, j+1,k,l) * dun(iLat) * duw(iLon) * cst(iLat+1) . + arg_2(i+1,j+1,k,l) * dun(iLat) * due(iLon) * cst(iLat+1) . ) / dyu(iLat) / dxu(iLon) / csu(iLat) adv_fb(i1,j1,k1,l1,i2,j2,k2,l2, iLat,iLon) = . adv_vbu(i2,j2,k2,l2,iLat,iLon) . * (arg_1(i1,j1,k1,l1) + arg_1(i1,j1,k1+1,l1)) CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) CALL ef_get_coordinates (id, ARG1, X_AXIS, . arg_lo_ss(X_AXIS,ARG1), . arg_hi_ss(X_AXIS,ARG1), xU) CALL ef_get_coordinates (id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG1), . arg_hi_ss(Y_AXIS,ARG1), yU) CALL ef_get_coordinates (id, ARG2, Z_AXIS, . arg_lo_ss(Z_AXIS,ARG2), . arg_hi_ss(Z_AXIS,ARG2), zW) CALL ef_get_coordinates (id, ARG3, X_AXIS, . arg_lo_ss(X_AXIS,ARG3), . arg_hi_ss(X_AXIS,ARG3), xT) CALL ef_get_coordinates (id, ARG3, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG3), . arg_hi_ss(Y_AXIS,ARG3), yT) CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, . backward, modulo, regular) IF ( ax_units(1) .NE. 'deg' .AND. . ax_units(1) .NE. 'lon' .AND. . ax_units(1) .NE. 'degrees_E' .AND. . ax_units(1) .NE. 'longitude' .AND. . ax_units(1) .NE. 'Longitude' .AND. . ax_units(1) .NE. 'LONGITUDE' ) THEN WRITE (6,*)'Longitude axis units =', ax_units(1) ! CALL ef_bail_out(id,'Longitude axis must be in degrees') ENDIF IF ( ax_units(2) .NE. 'deg' .AND. . ax_units(2) .NE. 'lat' .AND. . ax_units(2) .NE. 'degrees_N' .AND. . ax_units(2) .NE. 'latitude' .AND. . ax_units(2) .NE. 'Latitude' .AND. . ax_units(2) .NE. 'LATITUDE' ) THEN WRITE (6,*)'Latitude axis units =', ax_units(2) ! CALL ef_bail_out(id,'Latitude axis must be in degrees') ENDIF CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, . backward, modulo, regular) IF ( ax_units(3) .NE. 'm' .AND. . ax_units(3) .NE. 'meters' .AND. . ax_units(3) .NE. 'M' .AND. . ax_units(3) .NE. 'METERS' ) THEN WRITE (6,*)'Longitude axis units =', ax_units(1) ! CALL ef_bail_out(id,'Z axis must be in meters') ENDIF l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) ilat = 2 j1 = arg_lo_ss(Y_AXIS,ARG1) + 1 j2 = arg_lo_ss(Y_AXIS,ARG2) + 1 DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) iLon = 2 i1 = arg_lo_ss(X_AXIS,ARG1) + 1 i2 = arg_lo_ss(X_AXIS,ARG2) + 1 DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) iZ = 1 k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF (arg_1(i1, j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_2(i2, j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2-1,k2,l2) .EQ. bad_flag(ARG2)) THEN result(i,j,k,l) = bad_flag_result ELSE IF (k1 .EQ. 1) THEN result(i,j,k,l) = ( . adv_fb(i1,j1,k1,l1, . i2,j2,k2,l2, iLat,iLon) . / 2. . - arg_1(i1,j1,k1,l1) * . adv_vbu(i2,j2,k2,l2,iLat,iLon) . ) / (zW(iZ)*Meters_to_cm) . * sec_per_month ELSE result(i,j,k,l) = ( . - ( adv_fb(i1,j1,k1-1,l1, . i2,j2,k2-1,l2,iLat,iLon) . - adv_fb(i1,j1,k1, l1, . i2,j2,k2, l2, iLat,iLon) ) . / 2. . + arg_1(i1,j1,k1,l1) * . ( adv_vbu(i2,j2,k2-1,l2,iLat,iLon) . - adv_vbu(i2,j2,k2,l2,iLat,iLon) ) . ) / (zW(iZ-1)-zW(iZ))/Meters_to_cm . * sec_per_month ENDIF ENDIF iZ = iZ + 1 k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) ENDDO iLon = iLon + 1 i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) ENDDO iLat = iLat + 1 j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) ENDDO END