* rr_av.F ---- Rick Romea Jun. 6, 2000 * * Vertical diffusion coefficient: Az (Units = cm^2/s) * ******************************************************************* SUBROUTINE RR_av_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc(id,'Vertical diffusion coefficient:Az (cm^2/s)') CALL ef_set_num_args(id,4) CALL ef_set_axis_inheritance(id,IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS,IMPLIED_BY_ARGS,IMPLIED_BY_ARGS) CALL ef_set_arg_name (id, ARG1, 'U') CALL ef_set_arg_desc (id, ARG1, . 'Zonal velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) CALL ef_set_axis_extend (id, ARG1, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Z_AXIS,0,+1) CALL ef_set_arg_name (id, ARG2, 'V') CALL ef_set_arg_desc (id, ARG2, . 'Meridional velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG2, 'cm/sec') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2,YES,YES,YES,YES) CALL ef_set_axis_extend (id, ARG2, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Z_AXIS,0,+1) CALL ef_set_arg_name (id, ARG3, 'TEMP') CALL ef_set_arg_desc (id, ARG3, . 'Potential temperature, on MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG3, 'deg-C') CALL ef_set_arg_type (id, ARG3, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG3, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG3, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Z_AXIS,0,+1) CALL ef_set_arg_name (id, ARG4, 'SALT') CALL ef_set_arg_desc (id, ARG4, . 'Salinity, on MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG4, '(ppt-35)/1000') CALL ef_set_arg_type (id, ARG4, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG4, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG4, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG4, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG4, Z_AXIS,0,+1) END SUBROUTINE RR_av_compute(id,arg_1,arg_2,arg_3,arg_4,result) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL arg_3 (mem3lox:mem3hix, mem3loy:mem3hiy, . mem3loz:mem3hiz, mem3lot:mem3hit) REAL arg_4 (mem4lox:mem4hix, mem4loy:mem4hiy, . mem4loz:mem4hiz, mem4lot:mem4hit) REAL result (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER i3, j3, k3, l3 INTEGER i4, j4, k4, l4 REAL*8 zT(1024) INTEGER iZ REAL get_dzw,dzw,dzt,rhom1z,Ri,Potential_density INCLUDE 'rr_parameters.h' ! visc_cbu_back = 1. ! wndmix = 10. ! visc_cbu_limit = fricmx ! fricmx = 50. ! gravity = 980.6 c********************************************************************* c THIS IS THE MOM2 CODE: c c dzt = thickness of "t" grid cells (cm) c dztr(k) = reciprocal of "dzt" c dzw(k) = vertical resolution of "w" grid cells (in cm) c dzwr(k) = reciprocal of "dzw" c visc_cbu = viscosity coefficient at bottom of "u" cells (cm**2/s) c visc_cbu_back = background viscosity (cm**2/s) = 1. c fricmx = maximum viscosity (cm**2/s) = 50. c visc_cbu_limit = largest viscosity (cm**2/sec) = fricmx c wndmix = min value for mixing at surface to c simulate high freq wind mixing. (cm**2/sec) = 10. c smf = surface momentum flux (dynes/cm**2) c smf(1) = taux smf(2) = tauy c grav = gravity (cm/sec**2) c epsln = small value: 1.e-25 c c t1 = 1./(1. + 5.*riu(i,k,j)) c visc_cbu(i,k,j) = fricmx*t1**2 + visc_cbu_back c if(riu(i,k,j).lt.0.)visc_cbu(i,k,j)=visc_cbu_limit ! unstable c if(visc_cbu(i,1,j).lt.wndmix)visc_cbu(i,1,j)=wndmix ! surface c c riu(i,k,j) = -grav/4.*dzw(k)*(rhom1z(i,k,j+1) + rhom1z(i+1,k,j+1) + c & rhom1z(i,k,j) + rhom1z(i+1,k,j)) / c & ((u(i,k,j,1)-u(i,k+1,j,1))**2+(u(i,k,j,2)-u(i,k+1,j,2))**2 + epsln) c rhom1z(i,k,j) = ro(i,k,j) - ro(i,k+1,j) c do ks=1,2 c call statec (t(1,1,1,1,tlev), t(1,1,1,2,tlev), ro(1,1,jsmw) c &, max(js,jsmw), je, istrt-1, iend+1, ks) c********************************************************************* ! Statement functions dzw(iZ) = get_dzw(iZ,zT) * Meters_to_cm dzt(iZ) = (dzw(iZ-1) + dzw(iZ)) / 2. rhom1z(i3,j3,k3,l3,i4,j4,k4,l4) = . Potential_density(arg_3(i3,j3,k3 ,l3), . arg_4(i4,j4,k4 ,l4)) . - Potential_density(arg_3(i3,j3,k3+1,l3), . arg_4(i4,j4,k4+1,l4)) CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) CALL ef_get_coordinates (id, ARG3, Z_AXIS, . arg_lo_ss(Z_AXIS,ARG3), . arg_hi_ss(Z_AXIS,ARG3), zT) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) l4 = arg_lo_ss(T_AXIS,ARG4) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) + 1 j2 = arg_lo_ss(Y_AXIS,ARG2) + 1 j3 = arg_lo_ss(Y_AXIS,ARG3) + 1 j4 = arg_lo_ss(Y_AXIS,ARG4) + 1 DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) i1 = arg_lo_ss(X_AXIS,ARG1) + 1 i2 = arg_lo_ss(X_AXIS,ARG2) + 1 i3 = arg_lo_ss(X_AXIS,ARG3) + 1 i4 = arg_lo_ss(X_AXIS,ARG4) + 1 DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) iZ = 1 k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) k3 = arg_lo_ss(Z_AXIS,ARG3) k4 = arg_lo_ss(Z_AXIS,ARG4) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF (arg_1(i1, j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_2(i2, j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_3(i3, j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_4(i4, j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4, j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4, j4-1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4-1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4-1,k4,l4) .EQ. bad_flag(ARG4) . )THEN result(i,j,k,l) = bad_flag_result ELSE Ri = - gravity/4. * dzw(iZ) * ( . rhom1z(i3 ,j3+1,k3,l3,i4 ,j4+1,k4,l4) + . rhom1z(i3+1,j3+1,k3,l3,i4+1,j4+1,k4,l4) + . rhom1z(i3 ,j3 ,k3,l3,i4 ,j4 ,k4,l4) + . rhom1z(i3+1,j3 ,k3,l3,i4+1,j4 ,k4,l4) ) / . ( (arg_1(i1,j1,k1,l1)-arg_1(i1,j1,k1+1,l1))**2 + . (arg_2(i2,j2,k2,l2)-arg_2(i2,j2,k2+1,l2))**2 . + epsln ) IF(Ri.lt.0.25)THEN result(i,j,k,l) = visc_cbu_limit ! unstable ELSE result(i,j,k,l) = fricmx/(1.+5.*Ri)**2 . + visc_cbu_back ENDIF IF(k1.EQ.1.AND.result(i,j,k,l).lt.wndmix) . result(i,j,k,l)=wndmix ! surface ENDIF iZ = iZ + 1 k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) k3 = k3 + arg_incr(Z_AXIS,ARG3) k4 = k4 + arg_incr(Z_AXIS,ARG4) ENDDO i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) i4 = i4 + arg_incr(X_AXIS,ARG4) ENDDO j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) j3 = j3 + arg_incr(Y_AXIS,ARG3) j4 = j4 + arg_incr(Y_AXIS,ARG4) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) l3 = l3 + arg_incr(T_AXIS,ARG3) l4 = l4 + arg_incr(T_AXIS,ARG4) ENDDO END REAL FUNCTION Potential_density(T,S) IMPLICIT NONE REAL T ! Potential Temperature REAL S ! ( SALINITY(ppt) - 35) / 1000 REAL Pressure / 1.0 / ! Bar REAL Sppt ! Salinity (ppt) Sppt = 1.e3*S+35. ! Convert S: --> ppt CALL RR_unesco(T,Sppt,Pressure,Potential_density) Potential_density = Potential_density*1.e-3 ! Convert:kg/m^3-->g/cm^3 END REAL FUNCTION get_dzw(iZ,zT) IMPLICIT NONE INTEGER iZ REAL*8 zT(iZ+1) IF(iZ.EQ.0)THEN get_dzw=SNGL(zT(1)) ELSE get_dzw=SNGL(zT(iZ+1)-zT(iZ)) ENDIF END