* rr_diff_sz.F * * Rick Romea * Jan. 24, 2000 * * Zonal diffusive term: [Az S_z]_z * Units : (SALINITY(ppm) - 0.035) / s * MOM2 Grid : T * ******************************************************************* SUBROUTINE RR_diff_sz_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc (id, . 'd(Az dS/dz)/dz diffusive term (SALT/s);MOM2 T Grid') CALL ef_set_num_args (id, 5) CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok (id, NO, NO, NO, NO) ! Define first argument (U) CALL ef_set_arg_name (id, ARG1, 'U') CALL ef_set_arg_desc (id, ARG1, . 'Zonal velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) CALL ef_set_axis_extend (id, ARG1, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Z_AXIS,0,+1) ! Define second argument (V) CALL ef_set_arg_name (id, ARG2, 'V') CALL ef_set_arg_desc (id, ARG2, . 'Meridional velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG2, 'cm/sec') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2,YES,YES,YES,YES) CALL ef_set_axis_extend (id, ARG2, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Z_AXIS,0,+1) ! Define third argument (TEMP) CALL ef_set_arg_name (id, ARG3, 'TEMP') CALL ef_set_arg_desc (id, ARG3, . 'Potential temperature, on MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG3, 'deg-C') CALL ef_set_arg_type (id, ARG3, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG3, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG3, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG3, Z_AXIS,0,+1) ! Define forth argument (SALT) CALL ef_set_arg_name (id, ARG4, 'SALT') CALL ef_set_arg_desc (id, ARG4, . 'Salinity, on MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG4, '(ppt-35)/1000') CALL ef_set_arg_type (id, ARG4, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG4, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG4, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG4, Y_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG4, Z_AXIS,0,+1) ! Define fifth argument (SFLX) CALL ef_set_arg_name (id, ARG5, 'SFLX') CALL ef_set_arg_desc (id, ARG5, . 'Surface salt flux.') CALL ef_set_arg_unit (id, ARG5, 'g/cm^2/sec') CALL ef_set_arg_type (id, ARG5, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG5, NO, NO, NO,YES) CALL ef_set_axis_extend (id, ARG5, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG5, Y_AXIS,-1,+1) ! Define a work array CALL ef_set_num_work_arrays (id, 1) END C************************************************************************* SUBROUTINE RR_diff_sz_work_size(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_set_work_array_dims (id, 1, . res_lo_ss(1), res_lo_ss(2), res_lo_ss(3), res_lo_ss(4), . res_hi_ss(1), res_hi_ss(2), res_hi_ss(3), res_hi_ss(4) ) END C************************************************************************* SUBROUTINE RR_diff_sz_compute(id, . arg_1,arg_2,arg_3,arg_4,arg_5,result,wrk_1) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL arg_3 (mem3lox:mem3hix, mem3loy:mem3hiy, . mem3loz:mem3hiz, mem3lot:mem3hit) REAL arg_4 (mem4lox:mem4hix, mem4loy:mem4hiy, . mem4loz:mem4hiz, mem4lot:mem4hit) REAL arg_5 (mem5lox:mem5hix, mem5loy:mem5hiy, . mem5loz:mem5hiz, mem5lot:mem5hit) REAL result (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) REAL wrk_1 (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER i3, j3, k3, l3 INTEGER i4, j4, k4, l4 INTEGER i5, j5, k5, l5 REAL*8 zT(1024) REAL*8 zU(1024) INTEGER iZ REAL get_dzw,dzw,dzt,diff_fb,rhom1z,riu,Ri,Potential_density INCLUDE 'rr_parameters.h' c********************************************************************* c THIS IS THE MOM2 CODE: c c DIFF_Tz(i,k,j) = (diff_fb(i,k-1,j) - diff_fb(i,k,j))*dztr(k) c c diff_fb(i,k,j) = diff_cbt(i,k,j)*dzwr(k)* c & (t(i,k,j,n) - t(i,k+1,j,n)) c diff_fb(i,0,j) = stf(i,j,n) c dzt = thickness of "t" grid cells (cm) c dztr = reciprocal of "dzt" c dzw(0) = zT(1) c dzw(k) = zT(k+1)-zT(k) c c diff_cbt = diffusion coefficient at bottom of "t" cells (cm**2/s) c diff_cbt_back = background diffusion coefficient (cm**2/s)=0.1 c fricmx = maximum diffusion coefficient (cm**2/s) = 50. c diff_cbt_limit = largest diffusion coefficient (cm**2/sec) = fricmx c wndmix = min value for diffusion coefficient at surface to c simulate high freq wind mixing. (cm**2/sec) = 10. c stf = surface heat flux (cal/cm2/sec) c Note: units: c stf = Salt Flux = g/cm2/sec c c grav = gravity (cm/sec**2) c epsln = small value: 1.e-25 c c rit(i,k,j) = (riu(i,k,j) + riu(i-1,k,j) c & + riu(i,k,j-1) + riu(i-1,k,j-1)) / 4. c riu(i,k,j) = -grav/4.*dzw(k)*(rhom1z(i,k,j+1) + rhom1z(i+1,k,j+1) + c & rhom1z(i,k,j) + rhom1z(i+1,k,j)) / c & ((u(i,k,j,1)-u(i,k+1,j,1))**2+(u(i,k,j,2)-u(i,k+1,j,2))**2 + epsln) c rhom1z(i,k,j) = ro(i,k,j) - ro(i,k+1,j) c c t2 = 1/(1 + 5*rit(i,k,j)) c diff_cbt(i,k,j,1) = fricmx*t2**3 + diff_cbt_back c if(rit(i,k,j).lt.0.)diff_cbt(i,k,j,1)=diff_cbt_limit c if(diff_cbt(i,1,j,1).lt.wndmix)diff_cbt(i,1,j,1)=wndmix c********************************************************************* ! Statement functions dzw(iZ) = get_dzw(iZ,zT) * Meters_to_cm dzt(iZ) = (dzw(iZ-1) + dzw(iZ)) / 2. diff_fb(i,j,k,l,iZ) = wrk_1(i,j,k,l)/dzw(iZ) ! wrk_1=diff_cbt . *(arg_4(i,j,k,l)-arg_4(i,j,k+1,l)) ! arg_4 = S rhom1z(i3,j3,k3,l3,i4,j4,k4,l4) = . Potential_density(arg_3(i3,j3,k3 ,l3), . arg_4(i4,j4,k4 ,l4)) . - Potential_density(arg_3(i3,j3,k3+1,l3), . arg_4(i4,j4,k4+1,l4)) riu (i1,j1,k1,l1, . i2,j2,k2,l2, . i3,j3,k3,l3, . i4,j4,k4,l4, iZ) = - gravity/4. * dzw(iZ) * ( . rhom1z(i3 ,j3+1,k3,l3,i4 ,j4+1,k4,l4) + . rhom1z(i3+1,j3+1,k3,l3,i4+1,j4+1,k4,l4) + . rhom1z(i3 ,j3 ,k3,l3,i4 ,j4 ,k4,l4) + . rhom1z(i3+1,j3 ,k3,l3,i4+1,j4 ,k4,l4) ) / . ( (arg_1(i1,j1,k1,l1)-arg_1(i1,j1,k1+1,l1))**2 + . (arg_2(i2,j2,k2,l2)-arg_2(i2,j2,k2+1,l2))**2 . + epsln ) ! Get axis data CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) CALL ef_get_coordinates (id, ARG1, Z_AXIS, . arg_lo_ss(Z_AXIS,ARG1), . arg_hi_ss(Z_AXIS,ARG1), zU) CALL ef_get_coordinates (id, ARG3, Z_AXIS, . arg_lo_ss(Z_AXIS,ARG3), . arg_hi_ss(Z_AXIS,ARG3), zT) ! Compute the viscosity coefficients l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) l4 = arg_lo_ss(T_AXIS,ARG4) l5 = arg_lo_ss(T_AXIS,ARG5) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) + 1 j2 = arg_lo_ss(Y_AXIS,ARG2) + 1 j3 = arg_lo_ss(Y_AXIS,ARG3) + 1 j4 = arg_lo_ss(Y_AXIS,ARG4) + 1 j5 = arg_lo_ss(Y_AXIS,ARG5) + 1 DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) i1 = arg_lo_ss(X_AXIS,ARG1) + 1 i2 = arg_lo_ss(X_AXIS,ARG2) + 1 i3 = arg_lo_ss(X_AXIS,ARG3) + 1 i4 = arg_lo_ss(X_AXIS,ARG4) + 1 i5 = arg_lo_ss(X_AXIS,ARG5) + 1 DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) iZ = 1 k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) k3 = arg_lo_ss(Z_AXIS,ARG3) k4 = arg_lo_ss(Z_AXIS,ARG4) k5 = arg_lo_ss(Z_AXIS,ARG5) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF ( . arg_1(i1, j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_2(i2, j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_3(i3, j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_4(i4, j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4, k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4, j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4+1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4, j4-1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4+1,j4-1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_4(i4-1,j4-1,k4,l4) .EQ. bad_flag(ARG4) .OR. . arg_5(i5, j5, k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5+1,j5, k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5-1,j5, k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5, j5+1,k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5+1,j5+1,k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5-1,j5+1,k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5, j5-1,k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5+1,j5-1,k5,l5) .EQ. bad_flag(ARG5) .OR. . arg_5(i5-1,j5-1,k5,l5) .EQ. bad_flag(ARG5) . )THEN wrk_1(i,j,k,l) = bad_flag_result ELSE Ri = ( . Riu (i1,j1,k1,l1, . i2,j2,k2,l2, . i3,j3,k3,l3, . i4,j4,k4,l4, iZ) . + . Riu (i1-1,j1,k1,l1, . i2-1,j2,k2,l2, . i3-1,j3,k3,l3, . i4-1,j4,k4,l4, iZ) . + . Riu (i1,j1-1,k1,l1, . i2,j2-1,k2,l2, . i3,j3-1,k3,l3, . i4,j4-1,k4,l4, iZ) . + . Riu (i1-1,j1-1,k1,l1, . i2-1,j2-1,k2,l2, . i3-1,j3-1,k3,l3, . i4-1,j4-1,k4,l4, iZ) . ) / 4. ! Diffusion coefficient IF(Ri.lt.0.)THEN wrk_1(i,j,k,l) = diff_cbt_limit ! unstable ELSE wrk_1(i,j,k,l) = fricmx/(1.+5.*Ri)**3 . + diff_cbt_back ENDIF IF(k1.EQ.1.AND.wrk_1(i,j,k,l).lt.wndmix)THEN wrk_1(i,j,k,l)=wndmix ! surface ENDIF ENDIF iZ = iZ + 1 k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) k3 = k3 + arg_incr(Z_AXIS,ARG3) k4 = k4 + arg_incr(Z_AXIS,ARG4) k5 = k5 + arg_incr(Z_AXIS,ARG5) ENDDO i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) i4 = i4 + arg_incr(X_AXIS,ARG4) i5 = i5 + arg_incr(X_AXIS,ARG5) ENDDO j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) j3 = j3 + arg_incr(Y_AXIS,ARG3) j4 = j4 + arg_incr(Y_AXIS,ARG4) j5 = j5 + arg_incr(Y_AXIS,ARG5) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) l3 = l3 + arg_incr(T_AXIS,ARG3) l4 = l4 + arg_incr(T_AXIS,ARG4) l4 = l5 + arg_incr(T_AXIS,ARG5) ENDDO ! Now compute the term l1 = arg_lo_ss(T_AXIS,ARG1) l5 = arg_lo_ss(T_AXIS,ARG5) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) + 1 j5 = arg_lo_ss(Y_AXIS,ARG5) + 1 DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) i1 = arg_lo_ss(X_AXIS,ARG1) + 1 i5 = arg_lo_ss(X_AXIS,ARG5) + 1 DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) iZ = 1 k1 = arg_lo_ss(Z_AXIS,ARG1) k5 = arg_lo_ss(Z_AXIS,ARG5) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF(wrk_1(i,j,k,l).EQ.bad_flag_result .OR. . arg_1(i1,j1,k1+1,l1).EQ.bad_flag(ARG1))THEN result(i,j,k,l) = bad_flag_result ELSE IF (k1.EQ.1) THEN ! Top term is wind stress term result(i,j,k,l) = ( arg_5(i5,j5,k5,l5) . - diff_fb(i1,j1,k1,l1,iZ) ) . /dzt(iZ) * sec_per_month ELSE result(i,j,k,l) = ( diff_fb(i1,j1,k1-1,l1,iZ-1) . - diff_fb(i1,j1,k1,l1,iZ) ) . /dzt(iZ) * sec_per_month ENDIF ENDIF iZ = iZ + 1 k1 = k1 + arg_incr(Z_AXIS,ARG1) k5 = k5 + arg_incr(Z_AXIS,ARG5) ENDDO i1 = i1 + arg_incr(X_AXIS,ARG1) i5 = i5 + arg_incr(X_AXIS,ARG5) ENDDO j1 = j1 + arg_incr(Y_AXIS,ARG1) j5 = j5 + arg_incr(Y_AXIS,ARG5) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) l5 = l5 + arg_incr(T_AXIS,ARG5) ENDDO END ! Density at one Bar REAL FUNCTION Potential_density(T,S) IMPLICIT NONE REAL T ! Potential Temperature REAL S ! ( SALINITY(ppt) - 35) / 1000 REAL Pressure / 1.0 / ! Bar REAL Sppt ! Salinity (ppt) Sppt = 1.e3*S+35. ! Convert S: --> ppt CALL RR_unesco(T,Sppt,Pressure,Potential_density) Potential_density = Potential_density*1.e-3 ! Convert:kg/m^3-->g/cm^3 END REAL FUNCTION get_dzw(iZ,zT) IMPLICIT NONE INTEGER iZ REAL*8 zT(iZ+1) IF(iZ.EQ.0)THEN get_dzw=SNGL(zT(1)) ELSE get_dzw=SNGL(zT(iZ+1)-zT(iZ)) ENDIF END