* rr_diff_ux.F * * Rick Romea * Jan. 24, 2000 * * Zonal momemtum diffusive term : Am u_xx * Units : cm/s/s * MOM2 Grid: U * ******************************************************************* SUBROUTINE RR_diff_ux_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc (id, .'Am(d^2u/dx^2) momentum diffusive term (cm/s^2);MOM2 U Grid') CALL ef_set_num_args (id, 2) CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok (id, NO, NO, YES, YES) ! Define first argument (U) CALL ef_set_arg_name (id, ARG1, 'U') CALL ef_set_arg_desc (id, ARG1, . 'Zonal velocity, on the MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) CALL ef_set_axis_extend (id, ARG1, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG1, Y_AXIS,-1,+1) ! Define second argument (TEMP) CALL ef_set_arg_name (id, ARG2, 'TEMP') CALL ef_set_arg_desc (id, ARG2, . 'Potential temperature, required to access MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG2, 'deg-C') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG2, X_AXIS,-1,+1) CALL ef_set_axis_extend (id, ARG2, Y_AXIS,-1,+1) END SUBROUTINE RR_diff_ux_compute(id, arg_1, arg_2, result) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL result (memreslox:memreshix,memresloy:memreshiy, . memresloz:memreshiz,memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l INTEGER i1, j1, k1, l1 REAL*8 yU(1024) REAL*8 xU(1024) REAL*8 yT(1024) REAL*8 xT(1024) INTEGER ilat INTEGER ilon CHARACTER *16 ax_name(4) CHARACTER *16 ax_units(4) LOGICAL backward(4) LOGICAL modulo(4) LOGICAL regular(4) REAL dxt, dxu, dyt REAL diff_fe REAL csu,xjt INCLUDE 'rr_parameters.h' C********************************************************************* C C THIS IS THE MOM2 CODE: C c dyt = latitudinal height of "t" grid box (in cm) c dxt = longitudinal width of "t" grid box at the equator (cm) c dxu = longitudinal width of "u,v" grid box at the equator (cm) c dyu = latitudinal height of "u,v" grid box (cm) C c dus = yu(j) - yt(j) c dun = yt(j+1) - yu(j) c duw = xu(i) - xt(i) c due = xt(i+1) - xu(i) C c yu(j) = latitude of the jth "u,v" point in degrees c yt(j) = latitude of the jth "t" point in degrees c xt(i) = longitude of the ith "t" point in degrees c xu(i) = longitude of the ith "u,v" point in degrees C c c csu = cosine of "u" grid point latitude c csur = reciprocal of "csu" c dxu = longitudinal width of "u,v" grid box at the equator (cm) c dxur = reciprocal of "dxu" c dxt = longitudinal width of "t" grid box at the equator (cm) c dxtr = reciprocal of "dxt" c c am = constant lateral viscosity coeff for momentum (input) c C DIFF_Ux(i,k,j) =(diff_fe(i,k,j)-diff_fe(i-1,k,j))*csudxur(i,j) C csudxur(i,j) = csur(j)*dxur(i) C diff_fe(i,k,j) = am_csudxtr(i,j)*(u(i+1,k,j,n)-u(i,k,j,n)) C am_csudxtr(i,j) = am*xjt(j)*csur(j)*dxtr(i+1) C xjt(j) = 3.166*dyt(j)*dytr(50)-2.166 C C C********************************************************************* ! Statement functions dxt(i) = SNGL (xU(i) - xU(i-1)) * Longitude_to_cm dxu(i) = SNGL (xT(i+1) - xT(i)) * Longitude_to_cm dyt(j) = SNGL (yU(j) - yU(j-1)) * Latitude_to_cm csu(i) = cos(SNGL(yU(i)) * Degrees_to_radians) ! xjt(i) = 3.166*dyt(i)/dyt(50)-2.166 xjt(i) = 3.166*dyt(i)/dyt_ref-2.166 diff_fe(i,j,k,l,iLat,iLon) = am * xjt(iLat)/csu(iLat)/dxt(iLon) . *(arg_1(i+1,j,k,l) - arg_1(i,j,k,l)) ! Get axis data CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) CALL ef_get_coordinates (id, ARG1, X_AXIS, . arg_lo_ss(X_AXIS,ARG1), . arg_hi_ss(X_AXIS,ARG1), xU) CALL ef_get_coordinates (id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG1), . arg_hi_ss(Y_AXIS,ARG1), yU) CALL ef_get_coordinates (id, ARG2, X_AXIS, . arg_lo_ss(X_AXIS,ARG2), . arg_hi_ss(X_AXIS,ARG2), xT) CALL ef_get_coordinates (id, ARG2, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG2), . arg_hi_ss(Y_AXIS,ARG2), yT) ! Check axis units: bail out if not lat and lon. CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, . backward, modulo, regular) IF ( ax_units(1) .NE. 'deg' .AND. . ax_units(1) .NE. 'degrees_E' .AND. . ax_units(1) .NE. 'longitude' .AND. . ax_units(1) .NE. 'Longitude' .AND. . ax_units(1) .NE. 'LONGITUDE' ) THEN WRITE (6,*)'Longitude axis units =', ax_units(1) !CALL ef_bail_out(id,'Longitude axis must be in degrees') ENDIF IF ( ax_units(2) .NE. 'deg' .AND. . ax_units(2) .NE. 'degrees_N' .AND. . ax_units(2) .NE. 'latitude' .AND. . ax_units(2) .NE. 'Latitude' .AND. . ax_units(2) .NE. 'LATITUDE' ) THEN WRITE (6,*)'Latitude axis units =', ax_units(2) !CALL ef_bail_out(id,'Latitude axis must be in degrees') ENDIF l1 = arg_lo_ss(T_AXIS,ARG1) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) ilat = 2 j1 = arg_lo_ss(Y_AXIS,ARG1) + 1 DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) iLon = 2 i1 = arg_lo_ss(X_AXIS,ARG1) + 1 DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) IF (arg_1(i1, j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1, k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1+1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1, j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1+1,j1-1,k1,l1) .EQ. bad_flag(ARG1) .OR. . arg_1(i1-1,j1-1,k1,l1) .EQ. bad_flag(ARG1) )THEN result(i,j,k,l) = bad_flag_result ELSE result(i,j,k,l) = . (diff_fe(i1,j1,k1,l1,iLat,iLon) - . diff_fe(i1-1,j1,k1,l1,iLat,iLon-1) ) . /dxu(iLon)/csu(iLat)*sec_per_month ENDIF iLon = iLon + 1 i1 = i1 + arg_incr(X_AXIS,ARG1) ENDDO iLat = iLat + 1 j1 = j1 + arg_incr(Y_AXIS,ARG1) ENDDO k1 = k1 + arg_incr(Z_AXIS,ARG1) ENDDO l1 = l1 + arg_incr(T_AXIS,ARG1) ENDDO END