* rr_grad_pbc_v.F * * Rick Romea * Jan. 24, 2000 * * Baroclinic pressure gradient term in v momentum equation * Units : cm/s/s * MOM2 Grid: U * ************************************************************************ ! NOTE: still need to fix up if first z grid point is not 1 SUBROUTINE RR_grad_pbc_v_init(id) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id CALL ef_set_desc (id, .'Barclininc -dp/dy term (cm/s^2) on the MOM2 U Grid') CALL ef_set_num_args (id, 3) CALL ef_set_has_vari_args (id, NO) CALL ef_set_axis_inheritance (id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok (id, YES, YES, YES, YES) CALL ef_set_arg_name (id, ARG1, 'U') CALL ef_set_arg_desc (id, ARG1, . 'Zonal velocity,required to access MOM2 U Grid. ') CALL ef_set_arg_unit (id, ARG1, 'cm/sec') CALL ef_set_arg_type (id, ARG1, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG1, YES, YES, YES, YES) CALL ef_set_axis_extend (id, ARG1, X_AXIS,0,+1) CALL ef_set_arg_name (id, ARG2, 'TEMP') CALL ef_set_arg_desc (id, ARG2, . 'Potential Temperature, on the MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG2, 'oC') CALL ef_set_arg_type (id, ARG2, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG2, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG2, X_AXIS,0,+1) CALL ef_set_axis_extend (id, ARG2, Y_AXIS,0,+1) CALL ef_set_arg_name (id, ARG3, 'SALT') CALL ef_set_arg_desc (id, ARG3, . 'Salinity on the MOM2 T Grid. ') CALL ef_set_arg_unit (id, ARG3, 'ppm-0.035') CALL ef_set_arg_type (id, ARG3, FLOAT_ARG) CALL ef_set_axis_influence (id, ARG3, NO, NO,YES,YES) CALL ef_set_axis_extend (id, ARG3, X_AXIS,0,+1) CALL ef_set_axis_extend (id, ARG3, Y_AXIS,0,+1) END c******************************************************************* SUBROUTINE RR_grad_pbc_v_compute(id, arg_1, arg_2, arg_3, result) IMPLICIT NONE INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS) REAL bad_flag_result REAL arg_1 (mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2 (mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL arg_3 (mem3lox:mem2hix, mem3loy:mem2hiy, . mem3loz:mem2hiz, mem3lot:mem2hit) REAL result (memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) INTEGER res_lo_ss (4) INTEGER res_hi_ss (4) INTEGER res_incr (4) INTEGER arg_lo_ss (4,EF_MAX_ARGS) INTEGER arg_hi_ss (4,EF_MAX_ARGS) INTEGER arg_incr (4,EF_MAX_ARGS) INTEGER i, j, k, l, m INTEGER i2, j2, k2, l2, m1 INTEGER i3, j3, k3, l3 REAL*8 xU(1024) REAL*8 yU(1024) REAL*8 zU(1024) INTEGER ilat INTEGER ilon INTEGER iZ CHARACTER*16 ax_name(4) CHARACTER*16 ax_units(4) LOGICAL backward(4) LOGICAL modulo(4) LOGICAL regular(4) REAL dyt REAL*8 Rho ! functions for density REAL ss,tt INCLUDE 'rr_parameters.h' ! Statement Functions ss(i,j,k,l) = arg_3(i,j,k,l)*1000. + 35. ! True salinity (ppt) tt(i,j,k,l) = arg_2(i,j,k,l) CALL ef_get_res_subscripts (id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts (id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags (id, bad_flag, bad_flag_result) ! Check that upper z grid point is the surface z grid point IF (arg_lo_ss(Z_AXIS,ARG1) .NE. 1) THEN CALL ef_bail_out(id,'U:Upper grid point must be surface') ENDIF IF (arg_lo_ss(Z_AXIS,ARG2) .NE. 1) THEN CALL ef_bail_out(id,'TEMP:Upper grid point must be surface') ENDIF IF (arg_lo_ss(Z_AXIS,ARG3) .NE. 1) THEN CALL ef_bail_out(id,'SALT:Upper grid point must be surface') ENDIF ! Get U grid coordinates CALL ef_get_coordinates (id, ARG1, X_AXIS, . arg_lo_ss(X_AXIS,ARG1), . arg_hi_ss(X_AXIS,ARG1), xU) CALL ef_get_coordinates (id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS,ARG1), . arg_hi_ss(Y_AXIS,ARG1), yU) CALL ef_get_coordinates (id, ARG1, Z_AXIS, . arg_lo_ss(Z_AXIS,ARG1), . arg_hi_ss(Z_AXIS,ARG1), zU) ! check axis units CALL ef_get_axis_info (id, ARG2, ax_name, ax_units, . backward, modulo, regular) IF ( ax_units(1) .NE. 'deg' .AND. . ax_units(1) .NE. 'lon' .AND. . ax_units(1) .NE. 'degrees_E' .AND. . ax_units(1) .NE. 'longitude' .AND. . ax_units(1) .NE. 'Longitude' .AND. . ax_units(1) .NE. 'LONGITUDE' ) THEN WRITE (6,*)'Longitude axis units =', ax_units(1) ! CALL ef_bail_out(id,'Longitude axis must be in degrees') ENDIF IF ( ax_units(2) .NE. 'deg' .AND. . ax_units(2) .NE. 'lat' .AND. . ax_units(2) .NE. 'degrees_N' .AND. . ax_units(2) .NE. 'latitude' .AND. . ax_units(2) .NE. 'Latitude' .AND. . ax_units(2) .NE. 'LATITUDE' ) THEN WRITE (6,*)'Latitude axis units =', ax_units(2) ! CALL ef_bail_out(id,'Latitude axis must be in degrees') ENDIF ! start the loop iLat = 1 j2 = arg_lo_ss(Y_AXIS,ARG2) j3 = arg_lo_ss(Y_AXIS,ARG3) DO j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) dyt = SNGL (yU(iLat+1)-yU(iLat)) * Latitude_to_cm iLon = 1 i2 = arg_lo_ss(X_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) DO i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) DO l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) iZ = 1 k2 = arg_lo_ss(Z_AXIS,ARG2) k3 = arg_lo_ss(Z_AXIS,ARG3) DO k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF ( . arg_2(i2, j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2, j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2+1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2, k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2+1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_2(i2-1,j2-1,k2,l2) .EQ. bad_flag(ARG2) .OR. . arg_3(i3, j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3, j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3+1,j3-1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3, k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3+1,k3,l3) .EQ. bad_flag(ARG3) .OR. . arg_3(i3-1,j3-1,k3,l3) .EQ. bad_flag(ARG3) . ) THEN result(i,j,k,l) = bad_flag_result ELSE IF (iZ .EQ. 1) THEN ! Top z-grid point. result(i,j,k,l) = SNGL(zU(iZ)) * SNGL( . Rho(DBLE(tt(i2+1,j2+1,k2,l2)),DBLE(ss(i3+1,j3+1,k3,l3)),zU(iZ)) . +Rho(DBLE(tt(i2 ,j2+1,k2,l2)),DBLE(ss(i3 ,j3+1,k3,l3)),zU(iZ)) . -Rho(DBLE(tt(i2+1,j2 ,k2,l2)),DBLE(ss(i3+1,j3 ,k3,l3)),zU(iZ)) . -Rho(DBLE(tt(i2 ,j2 ,k2,l2)),DBLE(ss(i3 ,j3 ,k3,l3)),zU(iZ)) . ) ELSE result(i,j,k,l) = 0. m1=arg_lo_ss(Z_AXIS,ARG2)+1 DO m=2,iZ result(i,j,k,l) = result(i,j,k,l) + . SNGL (zU(m+1) - zU(m)) * SNGL ( . Rho(DBLE(tt(i2+1,j2+1,m1 ,l2)), . DBLE(ss(i3+1,j3+1,m1 ,l3)),zU(m )) . +Rho(DBLE(tt(i2+1,j2+1,m1-1,l2)), . DBLE(ss(i3+1,j3+1,m1-1,l3)),zU(m-1)) . +Rho(DBLE(tt(i2 ,j2+1,m1 ,l2)), . DBLE(ss(i3 ,j3+1,m1 ,l3)),zU(m )) . +Rho(DBLE(tt(i2 ,j2+1,m1-1,l2)), . DBLE(ss(i3 ,j3+1,m1-1,l3)),zU(m-1)) . -Rho(DBLE(tt(i2+1,j2 ,m1 ,l2)), . DBLE(ss(i3+1,j3 ,m1 ,l3)),zU(m )) . -Rho(DBLE(tt(i2+1,j2 ,m1-1,l2)), . DBLE(ss(i3+1,j3 ,m1-1,l3)),zU(m-1)) . -Rho(DBLE(tt(i2 ,j2 ,m1 ,l2)), . DBLE(ss(i3 ,j3 ,m1 ,l3)),zU(m )) . -Rho(DBLE(tt(i2 ,j2 ,m1-1,l2)), . DBLE(ss(i3 ,j3 ,m1-1,l3)),zU(m-1)) . ) m1 = m1 + arg_incr(Z_AXIS,ARG2) ENDDO result(i,j,k,l) = result(i,j,k,l)/2. ENDIF result(i,j,k,l) = result(i,j,k,l)*RR_temp1/dyt . * sec_per_month ENDIF iZ = iZ + 1 k2 = k2 + arg_incr(Z_AXIS,ARG2) k3 = k3 + arg_incr(Z_AXIS,ARG3) ENDDO l2 = l2 + arg_incr(T_AXIS,ARG2) l3 = l3 + arg_incr(T_AXIS,ARG3) ENDDO iLon = iLon + 1 i2 = i2 + arg_incr(X_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) ENDDO iLat = iLat + 1 j2 = j2 + arg_incr(Y_AXIS,ARG2) j3 = j3 + arg_incr(Y_AXIS,ARG3) ENDDO END ! Stolen KNUDSEN code to compute density ! D = depth (m) ! T = temperature (oC) ! S = salinity (ppt) REAL*8 FUNCTION Rho(T,S,D) IMPLICIT NONE REAL*8 T,S,D REAL*8 T2,T3,S2,S3,F1,F2,F3,FS,SIGMA,A,B1,B2,B,CO,ALPHA T2=T*T T3=T2*T S2=S*S S3=S2*S F1=-(T-3.98d0)**2*(T+283.d0)/(503.57d0*(T+67.26d0)) F2=T3*1.0843d-6-T2*9.8185d-5+T*4.786d-3 F3=T3*1.667d-8-T2*8.164d-7+T*1.803d-5 FS=S3*6.76786136d-6-S2*4.8249614d-4+S*8.14876577d-1 SIGMA=F1+(FS+3.895414d-2)*(1.d0-F2+F3*(FS-.22584586d0)) A=D*1.d-4*(105.5d0+T*9.5d0-T2*.158d0-D*T*1.5d-4)- .(227.d0+T*28.33d0-T2*.551d0+T3*.004d0) B1=(FS-28.1324d0)/10.d0 B2=B1*B1 B=-B1*(147.3d0-T*2.72d0+T2*.04d0-D*1.d- .4*(32.4d0-.87d0*T+.02d0*T2)) B=B+B2*(4.5d0-.1d0*T-D*1.d-4*(1.8d0-.06d0*T)) CO=4886.d0/(1.d0+1.83d-5*D) ALPHA=D*1.d-6*(CO+A+B) Rho=(SIGMA+ALPHA)/(1.d0-1.d-3*ALPHA) END