* * samplel_multi.F * * Ansley Manke * Dec 1998 * * This function samples data along the L axis using a set of indices * 4/5/99 Ansley Manke * Indices may be oriented along any axis; * Result is abstract on the sampled axis. * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE samplel_multi_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT ('Returns data sampled according to L indices which ', . 'may vary in IJK') CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_args(id, 2) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, ABSTRACT) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'L_INDICES') CALL ef_set_arg_desc(id, arg, 'ordered indices') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE') CALL ef_set_arg_desc(id, arg, 'data to sample using L indices') CALL ef_set_axis_influence(id, arg, YES, YES, YES, NO) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we provide information about the lo and hi * limits associated with each abstract or custom axis. The user * configurable information consists of the following: * * loss lo subscript for an axis * * hiss hi subscript for an axis * SUBROUTINE samplel_multi_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER my_lo_l, my_hi_l INTEGER nx, ny, nz, nt * Use utility functions to get context information about the * 1st argument, to set the abstract axis lo and hi indices. CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) nx = arg_hi_ss(X_AXIS, ARG1) - arg_lo_ss(X_AXIS, ARG1) + 1 ny = arg_hi_ss(Y_AXIS, ARG1) - arg_lo_ss(Y_AXIS, ARG1) + 1 nz = arg_hi_ss(Z_AXIS, ARG1) - arg_lo_ss(Z_AXIS, ARG1) + 1 nt = arg_hi_ss(T_AXIS, ARG1) - arg_lo_ss(T_AXIS, ARG1) + 1 * If there is a list of indices along the T-axis of ARG1, use the * argument subscripts for the abstract axis limits. my_lo_l = 1 my_hi_l = nt IF (arg_hi_ss(T_AXIS, ARG1) - arg_lo_ss(T_AXIS, ARG1) .EQ. 0) . my_hi_l = MAX(nx,ny,nz,nt) CALL ef_set_axis_limits(id, T_AXIS, my_lo_l, my_hi_l) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE samplel_multi_compute(id, arg_1, arg_2, result) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER id INTEGER i, j, k, l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2 INTEGER lorder REAL aorder INTEGER nlen(3), unspecified_int4 CHARACTER*8 lefint, aindex(3) CHARACTER*100 errtxt unspecified_int4 = -111 CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) i1 = arg_lo_ss(X_AXIS, ARG1) i2 = arg_lo_ss(X_AXIS, ARG2) DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) j2 = arg_lo_ss(Y_AXIS,ARG2) DO 300 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) DO 200 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) DO 100 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) * Get the index to sample, whichever axis of arg_1 it is on. aorder = arg_1(i1,j1,k1,l1) IF (l1 .EQ. unspecified_int4) . CALL pickindex(arg_1, l, aorder) lorder = aorder * Check that we do have an index of ARG_2; set the result IF (aorder .EQ. bad_flag(ARG1)) THEN result(i,j,k,l) = bad_flag_result ELSE IF (lorder .LT. arg_lo_ss(T_AXIS,ARG2) .OR. . lorder .GT. arg_hi_ss(T_AXIS,ARG2) ) THEN GO TO 999 ELSE IF (arg_2(i2,j2,k2,lorder) .EQ. bad_flag(ARG2)) . THEN result(i,j,k,l) = bad_flag_result ELSE result(i,j,k,l) = arg_2(i2,j2,k2,lorder) END IF END IF END IF l1 = l1 + arg_incr(T_AXIS,ARG1) 100 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) 400 CONTINUE RETURN 999 CONTINUE aindex(1) = LEFINT(lorder,nlen(1)) aindex(2) = LEFINT(arg_lo_ss(T_AXIS,ARG2),nlen(2)) aindex(3) = LEFINT(arg_hi_ss(T_AXIS,ARG2),nlen(3)) WRITE (errtxt,*) 'Sampling index ', aindex(1)(1:nlen(1)), . ' in ARG1 is outside the range of L indices for ARG2 (', . aindex(2)(1:nlen(2)), ':', aindex(3)(1:nlen(3)), ')' CALL EF_BAIL_OUT(id, errtxt) RETURN END * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** SUBROUTINE pickindex(arr, lindex, aorder) * Get the index to sample, whichever axis of arg_1 it is on. Collapse * the array to one dimension and return the l'th point. real arr(*), aorder integer lindex aorder = arr(lindex) return end