* * samplexyt.F * * This software was developed by the Thermal Modeling and Analysis * Project(TMAP) of the National Oceanographic and Atmospheric * Administration's (NOAA) Pacific Marine Environmental Lab(PMEL), * hereafter referred to as NOAA/PMEL/TMAP. * * Access and use of this software shall impose the following * obligations and understandings on the user. The user is granted the * right, without anx fee or cost, to use, copy, modify, alter, enhance * and distribute this software, and anx derivative works thereof, and * its supporting documentation for anx purpose whatsoever, provided * that this entire notice appears in all copies of the software, * derivative works and supporting documentation. Further, the user * agrees to credit NOAA/PMEL/TMAP in anx publications that result from * the use of this software or in anx product that includes this * software. The names TMAP, NOAA and/or PMEL, however, may not be used * in anx advertising or publicity to endorse or promote anx products * or commercial entity unless specific written permission is obtained * from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP * is not obligated to provide the user with anx support, consulting, * training or assistance of anx kind with regard to the use, operation * and performance of this software nor to provide the user with anx * updates, revisions, new versions or "bug fixes". * * THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND Anx EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR Anx SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR Anx DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. * * Ansley Manke * ------------------------------------------------------------------- * * This function samples 4-d data at the x, y, t locations indicated by * args 2, 3,4 * 1/18/08 Ansley Manke * Result is abstract on the x axis, normal on the y and t axes, * and keeps the z axes of the input 4-d data. * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE samplexyt_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT ('Returns data sampled at a set of (X,Y,T) points, ', . 'using linear interpolation') CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_args(id, 4) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, ABSTRACT, . NORMAL, IMPLIED_BY_ARGS, NORMAL) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) CALL ef_set_num_work_arrays(id, 5) arg = 1 CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE') CALL ef_set_arg_desc(id, arg, 'variable (x,y,z,t) to sample') CALL ef_set_axis_influence(id, arg, NO, NO, YES, NO) arg = 2 CALL ef_set_arg_name(id, arg, 'XPTS') CALL ef_set_arg_desc(id, arg, 'X values of sample points') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 3 CALL ef_set_arg_name(id, arg, 'YPTS') CALL ef_set_arg_desc(id, arg, 'Y values of sample points') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 4 CALL ef_set_arg_name(id, arg, 'TPTS') CALL ef_set_arg_desc(id, arg, 'T values of sample points') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we provide information about the lo and hi * limits associated with each abstract or custom axis. The user * configurable information consists of the following: * * loss lo subscript for an axis * * hiss hi subscript for an axis * SUBROUTINE samplexyt_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER my_lo_l, my_hi_l INTEGER nx, ny, nz, nt * Use utility functions to get context information about the * 1st argument, to set the abstract axis lo and hi indices. CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) nx = arg_hi_ss(X_AXIS, ARG2) - arg_lo_ss(X_AXIS, ARG2) + 1 ny = arg_hi_ss(Y_AXIS, ARG2) - arg_lo_ss(Y_AXIS, ARG2) + 1 nz = arg_hi_ss(Z_AXIS, ARG2) - arg_lo_ss(Z_AXIS, ARG2) + 1 nt = arg_hi_ss(T_AXIS, ARG2) - arg_lo_ss(T_AXIS, ARG2) + 1 my_lo_l = 1 my_hi_l = max(nx,ny,nz,nt) CALL ef_set_axis_limits(id, X_AXIS, my_lo_l, my_hi_l) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE samplexyt_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_lens(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER mxh, myh, mth, mxl, myl, mtl INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) * Allocate double the length of the axes for REAL*8 work arrays. * For x and t axes allow yet one more point for handling modulo axes mxl = arg_lo_ss(X_AXIS,ARG1) myl = arg_lo_ss(Y_AXIS,ARG1) mtl = arg_lo_ss(T_AXIS,ARG1) mxh = mxl + . 2* (arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1) + 2) myh = myl + . 2* (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1) + 1) mth = mtl + . 2* (arg_hi_ss(T_AXIS,ARG1) - arg_lo_ss(T_AXIS,ARG1) + 2) * xaxdat CALL ef_set_work_array_dims (id, 1, mxl, 1, 1, 1, mxh, 1, 1, 1) * yaxdat CALL ef_set_work_array_dims (id, 2, myl, 1, 1, 1, myh, 1, 1, 1) * taxdat CALL ef_set_work_array_dims (id, 3, mtl, 1, 1, 1, mth, 1, 1, 1) * taxdatlo CALL ef_set_work_array_dims (id, 4, mtl, 1, 1, 1, mth, 1, 1, 1) * taxdathi CALL ef_set_work_array_dims (id, 5, mtl, 1, 1, 1, mth, 1, 1, 1) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE samplexyt_compute(id, arg_1, arg_2, arg_3, arg_4, . result, xaxdat, yaxdat, taxdat, taxdatlo, taxdathi) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, mem3loz:mem3hiz, . mem3lot:mem3hit) REAL arg_4(mem4lox:mem4hix, mem4loy:mem4hiy, mem4loz:mem4hiz, . mem4lot:mem4hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V COMMON /STOR/ mxdat, mydat INTEGER mxdat, mydat INTEGER nx, nxx, nxy, nxz, nxt INTEGER ny, nyx, nyy, nyz, nyt INTEGER nt, ntx, nty, ntz, ntt INTEGER ndimx, ndimy, ndimt * Set up work arrays REAL*8 xaxdat(wrk1lox:wrk1lox+(wrk1hix-wrk1lox)/2,wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz, wrk1lot:wrk1hit) REAL*8 yaxdat(wrk2lox:wrk2lox+(wrk2hix-wrk2lox)/2,wrk2loy:wrk2hiy, . wrk2loz:wrk2hiz, wrk2lot:wrk2hit) REAL*8 taxdat(wrk3lox:wrk3lox+(wrk3hix-wrk3lox)/2,wrk3loy:wrk3hiy, . wrk3loz:wrk3hiz, wrk3lot:wrk3hit) REAL*8 taxdatlo(wrk4lox:wrk4lox+(wrk4hix-wrk4lox)/2,wrk4loy:wrk4hiy, . wrk4loz:wrk4hiz, wrk4lot:wrk4hit) REAL*8 taxdathi(wrk5lox:wrk5lox+(wrk5hix-wrk5lox)/2,wrk5loy:wrk5hiy, . wrk5loz:wrk5hiz, wrk5lot:wrk5hit) INTEGER i, j, k, l INTEGER i1,j1,k1,l1 INTEGER i2,j2,k2,l2 INTEGER i3,j3,k3,l3 INTEGER i4,j4,k4,l4 LOGICAL ok INTEGER STR_UPCASE, ic, imatch, jmatch, lmatch INTEGER ibot, itop, jbot, jtop, lbot, ltop REAL fxbot, fxtop, fbb, ftb, fbt, ftt REAL xbot, xtop, ybot, ytop, tbot, ttop REAL frac, tfrac_lo, tfrac_hi, aa, bb CHARACTER err_msg*255, test_str*16 C variables for checking axis characteristics (modulo axes) CHARACTER ax_name(4)*16, ax_units(4)*16 LOGICAL backward(4), modulo(4), regular(4) INTEGER xlo, xhi, ylo, yhi, tlo, thi REAL dx, dt, delmodx, delmodt, xpt, ypt, tpt CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) nxx = arg_hi_ss(X_AXIS,ARG2) - arg_lo_ss(X_AXIS,ARG2) + 1 nxy = arg_hi_ss(Y_AXIS,ARG2) - arg_lo_ss(Y_AXIS,ARG2) + 1 nxz = arg_hi_ss(Z_AXIS,ARG2) - arg_lo_ss(Z_AXIS,ARG2) + 1 nxt = arg_hi_ss(T_AXIS,ARG2) - arg_lo_ss(T_AXIS,ARG2) + 1 nx = max(nxx, nxy, nxz, nxt) nyx = arg_hi_ss(X_AXIS,ARG3) - arg_lo_ss(X_AXIS,ARG3) + 1 nyy = arg_hi_ss(Y_AXIS,ARG3) - arg_lo_ss(Y_AXIS,ARG3) + 1 nyz = arg_hi_ss(Z_AXIS,ARG3) - arg_lo_ss(Z_AXIS,ARG3) + 1 nyt = arg_hi_ss(T_AXIS,ARG3) - arg_lo_ss(T_AXIS,ARG3) + 1 ny = max(nyx, nyy, nyz, nyt) ntx = arg_hi_ss(X_AXIS,ARG4) - arg_lo_ss(X_AXIS,ARG4) + 1 nty = arg_hi_ss(Y_AXIS,ARG4) - arg_lo_ss(Y_AXIS,ARG4) + 1 ntz = arg_hi_ss(Z_AXIS,ARG4) - arg_lo_ss(Z_AXIS,ARG4) + 1 ntt = arg_hi_ss(T_AXIS,ARG4) - arg_lo_ss(T_AXIS,ARG4) + 1 nt = max(ntx, nty, ntz, ntt) ndimx = 0 ndimy = 0 ndimt = 0 DO 110 i = X_AXIS,T_AXIS IF (arg_hi_ss(i,ARG2) - arg_lo_ss(i,ARG2) .GT.0) . ndimx = ndimx + 1 IF (arg_hi_ss(i,ARG3) - arg_lo_ss(i,ARG3) .GT.0) . ndimy = ndimy + 1 IF (arg_hi_ss(i,ARG4) - arg_lo_ss(i,ARG4) .GT.0) . ndimt = ndimt + 1 110 CONTINUE IF (nx.NE.ny .OR. nx.NE.nt .OR. . ndimx.GT.1 .OR. ndimy.GT.1 .OR. ndimt.GT.1) THEN WRITE (err_msg, 10) GO TO 999 ENDIF 10 FORMAT( . 'Arguments 2, 3, and 4 must be 1-dimensional ', . 'lists of equal length') * Get x, y, t coordinates of the data to be sampled. CALL ef_get_coordinates(id, ARG1, X_AXIS, . arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1), xaxdat) CALL ef_get_coordinates(id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), yaxdat) CALL ef_get_coordinates(id, ARG1, T_AXIS, . arg_lo_ss(T_AXIS, ARG1), arg_hi_ss(T_AXIS, ARG1), taxdat) CALL ef_get_box_lo_lim(id, ARG1, T_AXIS, . arg_lo_ss(T_AXIS, ARG1), arg_hi_ss(T_AXIS, ARG1), taxdatlo) CALL ef_get_box_hi_lim(id, ARG1, T_AXIS, . arg_lo_ss(T_AXIS, ARG1), arg_hi_ss(T_AXIS, ARG1), taxdathi) i2 = arg_lo_ss(X_AXIS,ARG2) j2 = arg_lo_ss(Y_AXIS,ARG2) k2 = arg_lo_ss(Z_AXIS,ARG2) l2 = arg_lo_ss(T_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) j3 = arg_lo_ss(Y_AXIS,ARG3) k3 = arg_lo_ss(Z_AXIS,ARG3) l3 = arg_lo_ss(T_AXIS,ARG3) i4 = arg_lo_ss(X_AXIS,ARG4) j4 = arg_lo_ss(Y_AXIS,ARG4) k4 = arg_lo_ss(Z_AXIS,ARG4) l4 = arg_lo_ss(T_AXIS,ARG4) * Check to see if input x axis is modulo CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, backward, . modulo, regular) xlo = arg_lo_ss(X_AXIS,ARG1) xhi = arg_hi_ss(X_AXIS,ARG1) ylo = arg_lo_ss(Y_AXIS,ARG1) yhi = arg_hi_ss(Y_AXIS,ARG1) tlo = arg_lo_ss(T_AXIS,ARG1) thi = arg_hi_ss(T_AXIS,ARG1) IF ( modulo(1) ) THEN ic = STR_UPCASE (test_str, ax_units(1)) ok = (test_str(1:3) .EQ. 'DEG' .OR. regular(1)) IF (.NOT. ok) THEN err_msg = 'cannot handle MODULO axis that is not regular' go to 999 ELSE dx = xaxdat(xlo+1,1,1,1) - xaxdat(xlo,1,1,1) delmodx = xaxdat(xhi,1,1,1) - xaxdat(xlo,1,1,1) + dx xaxdat(xhi+1,1,1,1) = xaxdat(xlo,1,1,1) IF (ok) delmodx = 360. ENDIF ENDIF IF ( modulo(4) ) THEN ic = STR_UPCASE (test_str, ax_units(4)) ok = (regular(4)) IF (.NOT. ok) THEN err_msg = 'cannot handle MODULO T axis that is not regular' go to 999 ELSE dt = taxdathi(tlo,1,1,1) - taxdatlo(tlo,1,1,1) delmodt = taxdat(thi,1,1,1) - taxdat(tlo,1,1,1) + dt taxdat(thi+1,1,1,1) = taxdat(tlo,1,1,1) ENDIF ENDIF * For each (xpt,ypt,tpt) triple, * 1) search the time coordinates of arg 1 for the nearest Time match * 2) search the data array arg_1 for the nearest higher (x,y) grid * coordinates. Interpolate in 2 directions for the result. i2 = arg_lo_ss(X_AXIS,ARG2) j2 = arg_lo_ss(Y_AXIS,ARG2) k2 = arg_lo_ss(Z_AXIS,ARG2) l2 = arg_lo_ss(T_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) j3 = arg_lo_ss(Y_AXIS,ARG3) k3 = arg_lo_ss(Z_AXIS,ARG3) l3 = arg_lo_ss(T_AXIS,ARG3) j = res_lo_ss(Y_AXIS) l = res_lo_ss(T_AXIS) DO 500 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) ibot = ef_unspecified_int4 ! Check if xpt points in xax range. imatch = 0 xpt = arg_2(i2,j2,k2,l2) ypt = arg_3(i3,j3,k3,l3) tpt = arg_4(i3,j3,k3,l3) IF (xpt .EQ. bad_flag(ARG2) .OR. ypt .EQ. bad_flag(ARG3) . .OR. tpt .EQ. bad_flag(ARG4) ) THEN DO 700 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) result(i,j,k,l) = bad_flag_result 700 CONTINUE ELSE * Find location of TPT in grid Lbot = ef_unspecified_int4 ! Check if tpt point in tax range. Lmatch = 0 DO 600 i4 = arg_lo_ss(T_AXIS,ARG1), arg_hi_ss(t_AXIS,ARG1) IF (tpt .GE. taxdatlo(i4,1,1,1)) Lbot = i4 IF (tpt .EQ. taxdat(i4,1,1,1)) Lmatch = i4 IF (modulo(4)) THEN DO WHILE (tpt .GE. taxdathi(thi,1,1,1) ) tpt = tpt - delmodt ENDDO DO WHILE (tpt .LT. taxdatlo(tlo,1,1,1) ) tpt = tpt + delmodt ENDDO ENDIF 600 CONTINUE * Check that tpt is not beyond the upper end of the time axis range. IF (tpt .GT. taxdathi(arg_hi_ss(t_AXIS,ARG1),1,1,1)) . Lbot = ef_unspecified_int4 IF (Lbot .EQ. ef_unspecified_int4) THEN DO 800 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) result(i,j,k,l) = bad_flag_result 800 CONTINUE GOTO 400 ELSE IF (lmatch .NE. 0) then ltop = lbot ELSE ltop = lbot + 1 ltop = lbot ! when using cell bounds taxdatlo, taxdathi ENDIF IF (lbot .EQ. ef_unspecified_int4) ltop = lbot tbot = taxdatlo(lbot,1,1,1) ttop = taxdathi(ltop,1,1,1) IF (ltop .GE. arg_hi_ss(T_AXIS,ARG1)) . ltop = arg_hi_ss(T_AXIS,ARG1) IF (ttop .LT. tbot) THEN lbot = arg_hi_ss(T_AXIS,ARG1) ltop = arg_lo_ss(T_AXIS,ARG1) tbot = tbot - delmodt IF (tpt .GT. ttop) tpt = tpt - delmodt ENDIF IF (ttop .EQ. tbot) THEN tfrac_lo = 1. ELSE tfrac_lo = (ttop - tpt )/ (ttop - tbot) ENDIF tfrac_hi = 1. - tfrac_lo ENDIF DO 100 i1 = arg_lo_ss(X_AXIS,ARG1), arg_hi_ss(X_AXIS,ARG1) IF (xpt .GE. xaxdat(i1,1,1,1)) ibot = i1 IF (xpt .EQ. xaxdat(i1,1,1,1)) imatch = i1 cbf may be some derivation from the exact value can be allowed: cbf if (xpt - xaxdat(i1,1,1,1)).le.eps) imatch = i1 * Locate the X point within the range of modulo X axis IF (modulo(1)) THEN DO WHILE (xpt .GE. xaxdat(xhi,1,1,1) ) xpt = xpt - delmodx ENDDO DO WHILE (xpt .LT. xaxdat(xlo,1,1,1) ) xpt = xpt + delmodx ENDDO ENDIF 100 CONTINUE i1 = arg_hi_ss(X_AXIS,ARG1) IF (xpt .GT. xaxdat(i1,1,1,1)) THEN IF (.NOT. modulo(1)) . ibot = ef_unspecified_int4 ! ARG_2 XPT outside of range ! (non modulo) ENDIF cbf for matching the next neighbour is not of interest IF (imatch .NE. 0) then itop = ibot ELSE itop = ibot + 1 ENDIF IF (ibot .EQ. ef_unspecified_int4) THEN itop = ibot ELSE xbot = xaxdat(ibot,1,1,1) xtop = xaxdat(itop,1,1,1) c --- IF (modulo(1) .AND. xtop .LT. xbot) THEN ibot = arg_hi_ss(X_AXIS,ARG1) itop = arg_lo_ss(X_AXIS,ARG1) xbot = xbot - delmodx IF (xpt .GT. xtop) xpt = xpt - delmodx ENDIF c --- ENDIF cbf analogously in y direction jbot = ef_unspecified_int4 ! Check if ypt points in yax range. jmatch = 0 ypt = arg_3(i3,j3,k3,l3) DO 200 j1 = arg_lo_ss(Y_AXIS,ARG1), arg_hi_ss(Y_AXIS,ARG1) IF (ypt .GE. yaxdat(j1,1,1,1) ) jbot = j1 IF (ypt .EQ. yaxdat(j1,1,1,1) ) jmatch = j1 cbf IF (ypt - yaxdat(j1,1,1,1) ) .LE. eps) jmatch = j1 200 CONTINUE j1 = arg_hi_ss(Y_AXIS,ARG1) IF (arg_3(i3,j3,k3,l3) .GE. yaxdat(j1,1,1,1) ) THEN jbot = ef_unspecified_int4 ! ARG_3 YPT outside of range ! (non modulo) ENDIF IF (jmatch .NE. 0) then jtop = jbot ELSE jtop = jbot + 1 ENDIF IF (jbot .EQ. ef_unspecified_int4) jtop = jbot IF (jtop .GE. arg_hi_ss(Y_AXIS,ARG1)) . jtop = arg_hi_ss(Y_AXIS,ARG1) !10/2001 acm k1 = arg_lo_ss(Z_AXIS,ARG1) DO 333 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) * First interpolate in x, getting values of the fcn at (x,jbot) and (x,jtop) IF (ibot .EQ. ef_unspecified_int4 .OR. . jbot .EQ. ef_unspecified_int4) THEN result(i,j,k,l) = bad_flag_result ELSE aa = arg_1(ibot,jbot,k1,lbot) bb = arg_1(ibot,jbot,k1,ltop) fbb = aa* tfrac_lo + bb* tfrac_hi aa = arg_1(itop,jbot,k1,lbot) bb = arg_1(itop,jbot,k1,ltop) ftb = aa* tfrac_lo + bb* tfrac_hi aa = arg_1(ibot,jtop,k1,lbot) bb = arg_1(ibot,jtop,k1,ltop) fbt = aa* tfrac_lo + bb* tfrac_hi aa = arg_1(itop,jtop,k1,lbot) bb = arg_1(itop,jtop,k1,ltop) ftt = aa* tfrac_lo + bb* tfrac_hi IF (fbb .NE. bad_flag(ARG1) .AND. . ftb .NE. bad_flag(ARG1) .AND. . fbt .NE. bad_flag(ARG1) .AND. . ftt .NE. bad_flag(ARG1) ) THEN cbf for matching x-axis no interpolation is need IF (imatch .NE. 0) THEN fxbot = fbb fxtop = fbt ELSE frac = (xpt - xbot )/ (xtop - xbot) fxbot = fbb + frac* (ftb - fbb) fxtop = fbt + frac* (ftt - fbt) ENDIF * Now interpolate in y, getting value at (x,y) IF (jbot .GE. arg_lo_ss(Y_AXIS,ARG1) .AND. . jtop .LE. arg_hi_ss(Y_AXIS,ARG1) ) THEN ybot = yaxdat(jbot,1,1,1) ytop = yaxdat(jtop,1,1,1) IF (jmatch .NE. 0) THEN result(i,j,k,l) = fxbot ELSE frac = (ypt - ybot)/ (ytop-ybot) result(i,j,k,l) = fxbot + frac* . (fxtop - fxbot) ENDIF ELSE result(i,j,k,l) = bad_flag_result ENDIF ELSE result(i,j,k,l) = bad_flag_result ENDIF ! fbb,ftp, etc not bad flags ENDIF ! itop, jtop not ef_unspecified_int4 k1 = k1 + arg_incr(Z_AXIS,ARG1) 333 CONTINUE ENDIF ! xpt and ypt not bad values 400 CONTINUE i2 = i2 + arg_incr(X_AXIS,ARG2) j2 = j2 + arg_incr(Y_AXIS,ARG2) k2 = k2 + arg_incr(Z_AXIS,ARG2) l2 = l2 + arg_incr(T_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) j3 = j3 + arg_incr(Y_AXIS,ARG3) k3 = k3 + arg_incr(Z_AXIS,ARG3) l3 = l3 + arg_incr(T_AXIS,ARG3) j = j + res_incr(Y_AXIS) 500 CONTINUE RETURN 999 CALL ef_bail_out (id, err_msg) END