* * sampleyz.F * This software was developed by the Thermal Modeling and Analysis * Project(TMAP) of the National Oceanographic and Atmospheric * Administration's (NOAA) Pacific Marine Environmental Lab(PMEL), * hereafter referred to as NOAA/PMEL/TMAP. * * Access and use of this software shall impose the following * obligations and understandings on the user. The user is granted the * right, without anx fee or cost, to use, copy, modify, alter, enhance * and distribute this software, and anx derivative works thereof, and * its supporting documentation for anx purpose whatsoever, provided * that this entire notice appears in all copies of the software, * derivative works and supporting documentation. Further, the user * agrees to credit NOAA/PMEL/TMAP in anx publications that result from * the use of this software or in anx product that includes this * software. The names TMAP, NOAA and/or PMEL, however, may not be used * in anx advertising or publicity to endorse or promote anx products * or commercial entity unless specific written permission is obtained * from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP * is not obligated to provide the user with anx support, consulting, * training or assistance of anx kind with regard to the use, operation * and performance of this software nor to provide the user with anx * updates, revisions, new versions or "bug fixes". * * THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND Anx EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR Anx SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR Anx DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. * * Ansley Manke * From samplexy.F * Wednesday, May 02, 2001 * 11-Jan-06 *acm* declare ylo, yhi, zlo, zhi as integer not real * * This function samples 4-d data at y and z pts indicated by args 2 and 3 * * Result is abstract on the Y axis, normal on the z axis, * and keeps the x and t axes of the input 4-d data. * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE sampleyz_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT ('Returns data sampled at a set of (Y,X) points, ', . 'using linear interpolation') CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_args(id, 3) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, ABSTRACT, . NORMAL, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) CALL ef_set_num_work_arrays(id, 2) arg = 1 CALL ef_set_arg_name(id, arg, 'DAT_TO_SAMPLE') CALL ef_set_arg_desc(id, arg, 'variable (x,y,z,t) to sample') CALL ef_set_axis_influence(id, arg, YES, NO, NO, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'YPTS') CALL ef_set_arg_desc(id, arg, 'Y values of sample points') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 3 CALL ef_set_arg_name(id, arg, 'ZPTS') CALL ef_set_arg_desc(id, arg, 'Z values of sample points') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we provide information about the lo and hi * limits associated with each abstract or custom axis. The user * configurable information consists of the following: * * loss lo subscript for an axis * * hiss hi subscript for an axis * SUBROUTINE sampleyz_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER mz_lo_l, mz_hi_l INTEGER nx, ny, nz, nt * Use utility functions to get context information about the * 1st argument, to set the abstract axis lo and hi indices. CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) nx = arg_hi_ss(X_AXIS, ARG2) - arg_lo_ss(X_AXIS, ARG2) + 1 ny = arg_hi_ss(Y_AXIS, ARG2) - arg_lo_ss(Y_AXIS, ARG2) + 1 nz = arg_hi_ss(Z_AXIS, ARG2) - arg_lo_ss(Z_AXIS, ARG2) + 1 nt = arg_hi_ss(T_AXIS, ARG2) - arg_lo_ss(T_AXIS, ARG2) + 1 mz_lo_l = 1 mz_hi_l = max(nx,ny) mz_hi_l = max(mz_hi_l,nz) mz_hi_l = max(mz_hi_l,nt) CALL ef_set_axis_limits(id, Y_AXIS, mz_lo_l, mz_hi_l) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE sampleyz_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_lens(id,array #,ylo,zlo,zlo,tlo,yhi,zhi,zhi,thi) * INTEGER myl, myh, mzl, mzh INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) * Allocate double the length of the axes for REAL*8 work arrays. myl = arg_lo_ss(Y_AXIS,ARG1) mzl = arg_lo_ss(Z_AXIS,ARG1) myh = myl + . 2* (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1) + 1) mzh = mzl + . 2* (arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1) + 1) * yax CALL ef_set_work_array_dims (id, 1, myl, 1, 1, 1, myh, 1, 1, 1) * zax CALL ef_set_work_array_dims (id, 2, mzl, 1, 1, 1, mzh, 1, 1, 1) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE sampleyz_compute(id, arg_1, arg_2, arg_3, result, . yax, zax) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, mem3loz:mem3hiz, . mem3lot:mem3hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V COMMON /STOR/ mydat, mzdat INTEGER mydat, mzdat INTEGER ny, nyx, nyy, nyz, nyt INTEGER nz, nzx, nzy, nzz, nzt INTEGER ndimy, ndimz * Set up work arrays REAL*8 yax(wrk1lox:wrk1lox+(wrk1hix-wrk1lox)/2,wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz, wrk1lot:wrk1hit) REAL*8 zax(wrk2lox:wrk2lox+(wrk2hix-wrk2lox)/2,wrk2loy:wrk2hiy, . wrk2loz:wrk2hiz, wrk2lot:wrk2hit) INTEGER i, j, k, l INTEGER i1,j1,k1,l1 INTEGER i2,j2,k2,l2 INTEGER i3,j3,k3,l3 INTEGER jmatch, kmatch INTEGER jbot, jtop, kbot, ktop REAL fbot, ftop, fbb, ftb, fbt, ftt REAL ybot, ytop, zbot, ztop REAL frac CHARACTER*255 err_msg C variables for checking axis characteristics (modulo axes) CHARACTER ax_name(4)*16, ax_units(4)*16 LOGICAL backward(4), modulo(4), regular(4) REAL delmody, delmodz, ypt, zpt INTEGER ylo, yhi, zlo, zhi CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) nyx = arg_hi_ss(X_AXIS,ARG2) - arg_lo_ss(X_AXIS,ARG2) + 1 nyy = arg_hi_ss(Y_AXIS,ARG2) - arg_lo_ss(Y_AXIS,ARG2) + 1 nyz = arg_hi_ss(Z_AXIS,ARG2) - arg_lo_ss(Z_AXIS,ARG2) + 1 nyt = arg_hi_ss(T_AXIS,ARG2) - arg_lo_ss(T_AXIS,ARG2) + 1 ny = max(nyx, nyy, nyz, nyt) nzx = arg_hi_ss(X_AXIS,ARG3) - arg_lo_ss(X_AXIS,ARG3) + 1 nzy = arg_hi_ss(Y_AXIS,ARG3) - arg_lo_ss(Y_AXIS,ARG3) + 1 nzz = arg_hi_ss(Z_AXIS,ARG3) - arg_lo_ss(Z_AXIS,ARG3) + 1 nzt = arg_hi_ss(T_AXIS,ARG3) - arg_lo_ss(T_AXIS,ARG3) + 1 nz = max(nzx, nzy, nzz, nzt) ndimy = 0 ndimz = 0 DO 110 i = X_AXIS, T_AXIS IF (arg_hi_ss(i,ARG2) - arg_lo_ss(i,ARG2) .GT.0) . ndimy = ndimy + 1 IF (arg_hi_ss(i,ARG3) - arg_lo_ss(i,ARG3) .GT.0) . ndimz= ndimz + 1 110 CONTINUE IF (ny .NE. nz .OR. ndimy .GT. 1 .OR. ndimz .GT.1) THEN WRITE (err_msg, 10) GO TO 999 ENDIF 10 FORMAT( . 'Arguments 2 and 3 must be 1-dimensional lists of equal length') * Get y and z coordinates of the data to be sampled. CALL ef_get_coordinates(id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), yax) CALL ef_get_coordinates(id, ARG1, Z_AXIS, . arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), zax) i2 = arg_lo_ss(X_AXIS,ARG2) j2 = arg_lo_ss(Y_AXIS,ARG2) k2 = arg_lo_ss(Z_AXIS,ARG2) l2 = arg_lo_ss(T_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) j3 = arg_lo_ss(Y_AXIS,ARG3) k3 = arg_lo_ss(Z_AXIS,ARG3) l3 = arg_lo_ss(T_AXIS,ARG3) * Check to see if input y or z axis is modulo CALL ef_get_axis_info (id, ARG1, ax_name, ax_units, backward, . modulo, regular) ylo = arg_lo_ss(Y_AXIS,ARG1) yhi = arg_hi_ss(Y_AXIS,ARG1) zlo = arg_lo_ss(Z_AXIS,ARG1) zhi = arg_hi_ss(Z_AXIS,ARG1) IF ( modulo(1) ) delmody = yax(yhi,1,1,1) - yax(ylo,1,1,1) IF ( modulo(2) ) delmodz = zax(zhi,1,1,1) - zax(zlo,1,1,1) * For each (ypt,zpt) pair, search the data array * arg_1 for the nearest higher (y,z) grid coordinates. Interpolate * in 2 directions for the result. i2 = arg_lo_ss(X_AXIS,ARG2) j2 = arg_lo_ss(Y_AXIS,ARG2) k2 = arg_lo_ss(Z_AXIS,ARG2) l2 = arg_lo_ss(T_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) j3 = arg_lo_ss(Y_AXIS,ARG3) k3 = arg_lo_ss(Z_AXIS,ARG3) l3 = arg_lo_ss(T_AXIS,ARG3) k = res_lo_ss(Z_AXIS) DO 500 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) jbot = ef_unspecified_int4 ! Check if ypt points in xax range. jmatch = 0 ypt = arg_2(i2,j2,k2,l2) DO 100 j1 = arg_lo_ss(Y_AXIS,ARG1), arg_hi_ss(Y_AXIS,ARG1) IF (ypt .GE. yax(j1,1,1,1)) jbot = j1 if (ypt .EQ. yax(j1,1,1,1)) jmatch = j1 cbf may be some derivation from the exact value can be allowed: cbf if (ypt - yax(j1,1,1,1)).le.eps) jmatch = j1 * Locate the Y point within the range of modulo Y axis IF (modulo(2)) THEN DO WHILE (ypt .GE. yax(yhi,1,1,1) ) ypt = ypt - delmody ENDDO DO WHILE (ypt .LT. yax(ylo,1,1,1) ) ypt = ypt + delmody ENDDO ENDIF 100 CONTINUE j1 = arg_hi_ss(Y_AXIS,ARG1) IF (ypt .GT. yax(j1,1,1,1)) THEN jbot = ef_unspecified_int4 ! ARG_2 ypt outside of range ! (non modulo) ENDIF cbf for matching the next neighbour is not of interest IF (jmatch .NE. 0) then jtop = jbot ELSE jtop = jbot + 1 ENDIF IF (jbot .EQ. ef_unspecified_int4) jtop = jbot cbf analogously in z direction kbot = ef_unspecified_int4 ! Check if zpt points in yax range. kmatch = 0 zpt = arg_3(i3,j3,k3,l3) DO 200 k1 = arg_lo_ss(Z_AXIS,ARG1), arg_hi_ss(Z_AXIS,ARG1) IF (zpt .GE. zax(k1,1,1,1) ) kbot = k1 IF (zpt .EQ. zax(k1,1,1,1) ) kmatch = k1 cbf IF (zpt - zax(k1,1,1,1) ) .LE. eps) kmatch = k1 * Locate the Z point within the range of modulo Z axis IF (modulo(3)) THEN DO WHILE (zpt .GE. zax(zhi,1,1,1) ) zpt = zpt - delmodz ENDDO DO WHILE (zpt .LT. zax(zlo,1,1,1) ) zpt = zpt + delmodz ENDDO ENDIF 200 CONTINUE k1 = arg_hi_ss(Z_AXIS,ARG1) IF (arg_3(i3,j3,k3,l3) .GE. zax(k1,1,1,1) ) THEN kbot = ef_unspecified_int4 ! ARG_3 zpt outside of range ! (non modulo) ENDIF c print *, ' ypt,zpt,jbot,kbot', ypt,zpt,jbot,kbot IF (kmatch .NE. 0) then ktop = kbot ELSE ktop = kbot + 1 ENDIF IF (kbot .EQ. ef_unspecified_int4) ktop = kbot i1 = arg_lo_ss(X_AXIS,ARG1) DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) DO 300 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) * First interpolate in y, getting values of the fcn at (y,kbot) and (y,ktop) IF (jbot .EQ. ef_unspecified_int4 .OR. . kbot .EQ. ef_unspecified_int4) THEN result(i,j,k,l) = bad_flag_result ELSE IF (jbot .GE. arg_lo_ss(Y_AXIS,ARG1) .AND. . jtop .LE. arg_hi_ss(Y_AXIS,ARG1) ) THEN ybot = yax(jbot,1,1,1) ytop = yax(jtop,1,1,1) fbb = arg_1(i1,jbot,kbot,l1) fbt = arg_1(i1,jtop,kbot,l1) ! ftb = arg_1(i1,jbot,ktop,l1) ! ftt = arg_1(i1,jtop,ktop,l1) IF (fbb .NE. bad_flag(ARG1) .AND. . ftb .NE. bad_flag(ARG1) .AND. . fbt .NE. bad_flag(ARG1) .AND. . ftt .NE. bad_flag(ARG1) ) THEN cbf for matching x-axis no interpolation is need if (jmatch.eq.0) then fbot = fbb ftop = fbt else frac = (ypt - ybot )/ (ytop - ybot) fbot = fbb + frac* (ftb - fbb) ftop = fbt + frac* (ftt - fbt) endif * Now interpolate in z, getting value at (y,z) IF (kbot .GE. arg_lo_ss(Z_AXIS,ARG1) .AND. . ktop .LE. arg_hi_ss(Z_AXIS,ARG1) ) THEN zbot = zax(kbot,1,1,1) ztop = zax(ktop,1,1,1) if(kmatch.eq.0) then result(i,j,k,l) = fbot else frac = (zpt - zbot)/ (ztop-zbot) result(i,j,k,l) = fbot + frac* . (ftop - fbot) endif ELSE result(i,j,k,l) = bad_flag_result ENDIF ELSE result(i,j,k,l) = bad_flag_result ENDIF ! bad_flag(ARG1) test ENDIF ! fbb,ftp, etc not bad flags ENDIF ! jtop, ktop not ef_unspecified_int4 l1 = l1 + arg_incr(T_AXIS,ARG1) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) 400 CONTINUE i2 = i2 + arg_incr(X_AXIS,ARG2) j2 = j2 + arg_incr(Y_AXIS,ARG2) k2 = k2 + arg_incr(Z_AXIS,ARG2) l2 = l2 + arg_incr(T_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) j3 = j3 + arg_incr(Y_AXIS,ARG3) k3 = k3 + arg_incr(Z_AXIS,ARG3) l3 = l3 + arg_incr(T_AXIS,ARG3) k = k + res_incr(Z_AXIS) 500 CONTINUE RETURN 999 CALL ef_bail_out (id, err_msg) END