* * transpose_zt.F * * * * * This function sets the second argument to be equal * to the first one. * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE transpose_zt_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg CALL ef_version_test(ef_version) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V CALL ef_set_desc(id, . 'transposes Z and T axes of given variable' ) CALL ef_set_num_args(id, 1) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, ABSTRACT, ABSTRACT) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'VAR') CALL ef_set_arg_desc(id, arg, 'variable transposed in Z and T') CALL ef_set_axis_influence(id, arg, YES, YES, YES,YES) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END SUBROUTINE transpose_zt_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER my_lo_z, my_hi_z, my_lo_t, my_hi_t,nz,nt CHARACTER*100 errtxt INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * * Use utility functions to get context information about the arguments. * Set the abstract X and Y axes. * CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) nz = arg_hi_ss(Z_AXIS, ARG1) - arg_lo_ss(Z_AXIS, ARG1) + 1 nt = arg_hi_ss(T_AXIS, ARG1) - arg_lo_ss(T_AXIS, ARG1) + 1 * The below has the effect of translating any sub-matrix so that * the indices will always begin at 1 my_lo_z = 1 my_hi_z = nz my_lo_t = 1 my_hi_t = nt CALL ef_set_axis_limits(id, Z_AXIS, my_lo_t, my_hi_t) CALL ef_set_axis_limits(id, T_AXIS, my_lo_z, my_hi_z) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN 999 CONTINUE CALL EF_BAIL_OUT(id, errtxt) END * * In this subroutine we compute the result * SUBROUTINE transpose_zt_compute(id, arg_1, result) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i,j,k,l INTEGER i1, j1, k1, l1 CHARACTER*100 errtxt CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) * check to make sure both axis have points to transpose IF ((arg_lo_ss(T_AXIS, ARG1) .EQ. ef_unspecified_int4) .OR. . (arg_hi_ss(T_AXIS, ARG1) .EQ. ef_unspecified_int4)) THEN write(errtxt,*) 'T axis cannot be a normal axis' GOTO 999 ELSEIF ((arg_lo_ss(Z_AXIS, ARG1) .EQ. ef_unspecified_int4) .OR. . (arg_hi_ss(Z_AXIS, ARG1) .EQ. ef_unspecified_int4)) THEN write(errtxt,*) 'Z axis cannot be a normal axis' GOTO 999 ENDIF i1 = arg_lo_ss(X_AXIS, ARG1) DO 400 i = res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS, ARG1) DO 300 j = res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) k1 = arg_lo_ss(Z_AXIS, ARG1) DO 200 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) l1 = arg_lo_ss(T_AXIS, ARG1) DO 100 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) IF (arg_1(i1,j1,k1,l1) .ne. bad_flag(ARG1)) THEN result(i,j,k,l) = arg_1(i1,j1,k1,l1) ELSE result(i,j,k,l) = bad_flag_result ENDIF l1 = l1 + arg_incr(T_AXIS, ARG1) 100 CONTINUE k1 = k1 + arg_incr(Z_AXIS, ARG1) 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS, ARG1) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS, ARG1) 400 CONTINUE RETURN 999 CONTINUE CALL EF_BAIL_OUT(id, errtxt) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END