* * zaxreplace_rev.F ! version of zaxreplace_avg, with order of arguments 1 and 2 reversed * * This software was developed by the Thermal Modeling and Analysis * Project(TMAP) of the National Oceanographic and Atmospheric * Administration's (NOAA) Pacific Marine Environmental Lab(PMEL), * hereafter referred to as NOAA/PMEL/TMAP. * * Access and use of this software shall impose the following * obligations and understandings on the user. The user is granted the * right, without any fee or cost, to use, copy, modify, alter, enhance * and distribute this software, and any derivative works thereof, and * its supporting documentation for any purpose whatsoever, provided * that this entire notice appears in all copies of the software, * derivative works and supporting documentation. Further, the user * agrees to credit NOAA/PMEL/TMAP in any publications that result from * the use of this software or in any product that includes this * software. The names TMAP, NOAA and/or PMEL, however, may not be used * in any advertising or publicity to endorse or promote any products * or commercial entity unless specific written permission is obtained * from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP * is not obligated to provide the user with any support, consulting, * training or assistance of any kind with regard to the use, operation * and performance of this software nor to provide the user with any * updates, revisions, new versions or "bug fixes". * * THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR ANY SPECIAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF * CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE. * * Ansley Manke * Oct 1998 * 11/2001 clarify function description * 7/2003 Bug fix; last source point wasnt associated with a dest box * when the destination axis continues beyond the source range * * * Replace Z axis, using weighted averaging over bins * * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE zaxreplace_rev_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg *********************************************************************** * USER CONFIGURABLE PORTION | * | * V CHARACTER*100 fcn_desc WRITE (fcn_desc, 10) 10 FORMAT . ('regrid V onto Z axis of ZAX based on Z values in ZVALS ', . 'using weighted average' ) CALL ef_set_desc(id, fcn_desc) CALL ef_set_num_args(id, 3) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, YES, YES, YES, NO) CALL ef_set_num_work_arrays(id, 8) arg = 1 CALL ef_set_arg_name(id, arg, 'ZVALS') CALL ef_set_arg_desc(id, arg, . 'Destination Z axis values as a fcn of source Z axis') CALL ef_set_axis_influence(id, arg, NO, NO, NO, NO) arg = 2 CALL ef_set_arg_name(id, arg, 'V') CALL ef_set_arg_desc(id, arg, . 'Variable on native z axis') CALL ef_set_axis_influence(id, arg, YES, YES, NO, YES) arg = 3 CALL ef_set_arg_name(id, arg, 'ZAX') CALL ef_set_arg_desc(id, arg, .'Variable with desired z (depth) axis points') CALL ef_set_axis_influence(id, arg, NO, NO, YES, NO) * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END * * In this subroutine we request an amount of storage to be supplied * by Ferret and passed as an additional argument. * SUBROUTINE zaxreplace_rev_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER mz1, mz3 INTEGER iwork INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) * Allocate double the dimension of the input arguments for work arrays * which will be REAL*8 mz1 = 1 + ABS(arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1)) mz3 = 1 + ABS(arg_hi_ss(Z_AXIS,ARG3) - arg_lo_ss(Z_AXIS,ARG3)) mz1 = 2* mz1 mz3 = 2* mz3 * zaxsrc iwork = 1 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz1, 1) * sbox_lo_lim iwork = 2 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz1, 1) * sbox_hi_lim iwork = 3 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz1, 1) * sbox_lo_new iwork = 4 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz1, 1) * sbox_hi_new iwork = 5 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz1, 1) * dbox_lo_lim iwork = 6 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz3, 1) * dbox_hi_lim iwork = 7 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, mz3, 1) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE zaxreplace_rev_compute(id, arg_1, arg_2, arg_3, . result, zaxsrc, sbox_lo_lim, sbox_hi_lim, sbox_lo_new, . sbox_hi_new, dbox_lo_lim, dbox_hi_lim) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz, . mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, mem2loz:mem2hiz, . mem2lot:mem2hit) REAL arg_3(mem3lox:mem3hix, mem3loy:mem3hiy, mem3loz:mem3hiz, . mem3lot:mem3hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) *********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i, j, k, l INTEGER i1, j1, l1, i2, j2, l2, i3, j3, l3 INTEGER ifirst, iw, nbox, nsrc INTEGER nsrc_lo, nsrc_hi REAL frac, xsrc_min, xsrc_max, xsrc_lo, xsrc_hi, xsrcdiff REAL wtd, arg2_val, arg2_val_last, wtd_last REAL*8 sum, wtdsum REAL dbox_lo, dbox_hi c CHARACTER*132 err_msg * Dimension work arrays REAL*8 zaxsrc(wrk1lox:wrk1hix, wrk1loy:wrk1hiy, . wrk1loz:wrk1hiz/2, wrk1lot:wrk1hit) REAL*8 sbox_lo_lim(wrk2lox:wrk2hix, wrk2loy:wrk2hiy, . wrk2loz:wrk2hiz/2, wrk2lot:wrk2hit) REAL*8 sbox_hi_lim(wrk3lox:wrk3hix, wrk3loy:wrk3hiy, . wrk3loz:wrk3hiz/2, wrk3lot:wrk3hit) REAL*8 sbox_lo_new(wrk4lox:wrk4hix, wrk4loy:wrk4hiy, . wrk4loz:wrk4hiz/2, wrk4lot:wrk4hit) REAL*8 sbox_hi_new(wrk5lox:wrk5hix, wrk5loy:wrk5hiy, . wrk5loz:wrk5hiz/2, wrk5lot:wrk5hit) REAL*8 dbox_lo_lim(wrk6lox:wrk6hix, wrk6loy:wrk6hiy, . wrk6loz:wrk6hiz/2, wrk6lot:wrk6hit) REAL*8 dbox_hi_lim(wrk7lox:wrk7hix, wrk7loy:wrk7hiy, . wrk7loz:wrk7hiz/2, wrk7lot:wrk7hit) CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) CALL ef_get_coordinates(id, ARG1, Z_AXIS, . arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), zaxsrc) CALL ef_get_box_limits(id, ARG1, Z_AXIS, arg_lo_ss(Z_AXIS, ARG1), . arg_hi_ss(Z_AXIS, ARG1), sbox_lo_lim, sbox_hi_lim) CALL ef_get_box_limits(id, ARG3, Z_AXIS, arg_lo_ss(Z_AXIS, ARG3), . arg_hi_ss(Z_AXIS, ARG3), dbox_lo_lim, dbox_hi_lim) * * Loop over x,y,t of the input fields * ifirst = 1 iw = 0 i1 = arg_lo_ss(X_AXIS,ARG1) i2 = arg_lo_ss(X_AXIS,ARG2) i3 = arg_lo_ss(X_AXIS,ARG3) DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) j2 = arg_lo_ss(Y_AXIS,ARG2) j3 = arg_lo_ss(Y_AXIS,ARG3) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) l3 = arg_lo_ss(T_AXIS,ARG3) DO 200 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) * * -ACM- Note: need to think about backwards and forwards z axes: ht vs depth ? * Translate the source boxes to the new axis units. DO 500 k = arg_lo_ss(Z_AXIS,ARG2), . arg_hi_ss(Z_AXIS,ARG2) * Find the point on the source axis just below the box limit. Interpolate * to get the box limit in new units. nbox = 1 DO WHILE (zaxsrc(1,1,nbox,1) .LT. . sbox_lo_lim(1,1,k,1) ) nbox = nbox + 1 ENDDO IF (nbox .eq. 1) THEN sbox_lo_new(1,1,k,1) = arg_1(i1,j1,nbox,l1) ELSE frac = (sbox_lo_lim(1,1,k,1) - . zaxsrc(1,1,nbox-1,1))/ . (zaxsrc(1,1,nbox,1) - zaxsrc(1,1,nbox-1,1)) sbox_lo_new(1,1,k,1) = arg_1(i1,j1,nbox-1,l1) + . frac* . (arg_1(i1,j1,nbox,l1) - arg_1(i1,j1,nbox-1,l1)) ENDIF nbox = 1 DO WHILE (zaxsrc(1,1,nbox,1) .LT. sbox_hi_lim(1,1,k,1) . .AND. . nbox .lt. arg_hi_ss(Z_AXIS,ARG2)) nbox = nbox + 1 ENDDO IF (nbox .eq. 1) THEN sbox_hi_new(1,1,k,1) = arg_1(i1,j1,nbox,l1) ELSE frac = (sbox_hi_lim(1,1,k,1) - . zaxsrc(1,1,nbox-1,1))/ . (zaxsrc(1,1,nbox,1) - zaxsrc(1,1,nbox-1,1)) sbox_hi_new(1,1,k,1) = arg_1(i1,j1,nbox-1,l1) + . frac* . (arg_1(i1,j1,nbox,l1) - arg_1(i1,j1,nbox-1,l1)) ENDIF 500 CONTINUE * For each z line accumulate weighted source points and weights to get * the average value. Loop through the each destination grid box. sum = 0. wtdsum = 0. DO 100 k = res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) * Find the first and last source point in this destination box nsrc_lo = 1 nsrc_hi = 1 DO WHILE . (sbox_lo_new(1,1,nsrc_lo,1) .LT. . dbox_lo_lim(1,1,k,1) ) nsrc_lo = nsrc_lo + 1 IF (nsrc_lo .GT. arg_hi_ss(Z_AXIS, ARG1)) GO TO 11 ENDDO 11 CONTINUE * Find any portion of the source box lying in the destination box. DO WHILE . (sbox_lo_new(1,1,nsrc_hi,1) .LE. . dbox_hi_lim(1,1,k,1) ) nsrc_hi = nsrc_hi + 1 IF (nsrc_hi .GT. arg_hi_ss(Z_AXIS, ARG1)) GO TO 22 ENDDO 22 CONTINUE nsrc_hi = nsrc_hi - 1 * No source boxes within this destination box. IF (nsrc_hi .LT. nsrc_lo) THEN IF (wtdsum .NE. 0.) THEN result(i,j,k,l) = sum / wtdsum ELSE result(i,j,k,l) = bad_flag_result ENDIF GO TO 160 ENDIF DO 90 nsrc = nsrc_lo, nsrc_hi * Get fraction of this source box lying within the destination box. xsrc_min = sbox_lo_new(1,1,nsrc,1) xsrc_max = sbox_hi_new(1,1,nsrc,1) dbox_hi = dbox_hi_lim(1,1,k,1) dbox_lo = dbox_lo_lim(1,1,k,1) xsrc_lo = MAX(xsrc_min, dbox_lo) xsrc_hi = MIN(xsrc_max, dbox_hi) xsrcdiff = xsrc_max - xsrc_min wtd = 0. IF (xsrcdiff .NE. 0.) . wtd = (xsrc_hi - xsrc_lo)/xsrcdiff arg2_val = arg_2(i2,j2,nsrc,l2) IF (arg2_val .ne. bad_flag(ARG2)) THEN sum = sum + wtd * arg2_val wtdsum = wtdsum + wtd arg2_val_last = arg2_val wtd_last = wtd ENDIF 90 CONTINUE * If we had any good data, calculate the average. IF (wtdsum .NE. 0.) THEN result(i,j,k,l) = sum / wtdsum * Start next average with remaining weighted part of the last box with * was not within the destination box. sum = (1.- wtd_last)* arg2_val_last wtdsum = 1.- wtd_last ELSE result(i,j,k,l) = bad_flag_result sum = 0. wtdsum = 0. ENDIF 160 CONTINUE 100 CONTINUE l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) l3 = l3 + arg_incr(T_AXIS,ARG3) 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) j3 = j3 + arg_incr(Y_AXIS,ARG3) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) i3 = i3 + arg_incr(X_AXIS,ARG3) 400 CONTINUE * ^ * | * USER CONFIGURABLE PORTION | *********************************************************************** RETURN END